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Action Detection in Cluttered Video with
Successive Convex Matching

Hao Jiang, Mark S. Drew, and Ze-Nian Li

Abstract—We propose a novel successive convex matching
method for human action detection in cluttered video. Human
actions are represented as sequences of poses, and specific actions
are detected by matching pose sequences. Since we represent
actions as the evolution of poses and shapes, the proposed
method can detect actions in videos that involve fast camera
motions. Template sequence to video registration is nonlinear and
highly nonconvex. Instead of directly solving the hard problem,
our method convexifies it into a sequence of linear programs
and refines the matching by successive trust region shrinkage.
The proposed scheme further simplifies the linear programs by
representing the target point space with a small set of basis
points. The low complexity of the proposed method enables it
to search efficiently in a large range. Experiments show that
successive convex matching can robustly match a sequence of
coupled shape templates simultaneously to target sequences and
effectively detect specific actions in cluttered videos.

Index Terms—Action detection, matching, optimization.

I. Introduction

ACTION DETECTION in a controlled environment has
been intensively studied, and different real-time sys-

tems have been implemented [1]–[3]. These systems use
fixed cameras to facilitate foreground extraction or use mag-
netic/optical markers for movement extraction. Finding actions
in a video recorded in an uncontrolled environment, important
for surveillance, content based video retrieval and robotic
vision, is still a largely unsolved problem. The main difficulty
for action recognition in general video is that there is no
effective way to segment an object in such videos. Therefore,
we have to be able to locate the object and at the same time
detect its action. Factors such as the articulation of the human
body, variability of clothing, and background clutter make
action recognition a challenging task.

We propose a method to detect a specific human action
in such an uncontrolled setting. By representing an action as
a sequence of body poses with specific temporal constraints,
we search for a given action by matching to the video a
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sequence of coupled body pose templates. The matching is
formulated as an energy minimization problem. The goal is to
minimize the matching cost subject to consistency constraints,
viz. intraframe feature matching and a low degree of change in
the object center’s relative position across video frames. The
interobject center continuity constraint is important in that it
enforces matches in different video frames to stick to a single
object in a cluttered video, where multiple objects may indeed
appear.

Even though many feature matching schemes have been
proposed, they are not sufficient to solve the above-formulated
optimization problem. As shown in our experiments, a greedy
scheme such as iterative conditional modes (ICM) [4] is not
robust enough to match the target if it has large deformation
from the template or there is strong clutter in the background.
Robust matching methods such as graph cuts [5], belief
propagation [6] and, more recently, a linear programming (LP)
relaxation scheme [7] have been studied for finding correspon-
dence in single image pairs using pairwise constraints. But
these methods are not easily extended to include the center
continuity constraint in matching a template sequence to a
target video.

We consider a more efficient approach—a successive convex
matching scheme—for registering template image sequences
to targets in video [17]. We follow an LP relaxation scheme
[28] that has been applied to object detection, motion estima-
tion and tracking, reshaping the problem so that the interframe
constraint can be introduced. Instead of directly solving the
optimal matching problem, the proposed scheme converts
the optimization into easier convex problems which can be
solved by linear programming. An iterative process updates
the trust region and successively improves the approximation.
This convex matching scheme has many useful features: it
involves only a small set of basis target points, and it is a
strong approximation scheme. It is also found to be robust
against strong clutter and large deformations, necessary for
success of an action recognition scheme. After template to
video registration, we compare the similarity of the matching
targets in video with the templates using matching cost and
degree of deformation.

Finding people and recognizing human actions is a research
area with a long history in vision research. Searching for static
poses [8]–[10], [32] has been intensively studied. For action
recognition, the trajectories of body joints are natural features.
Even if the body joints can be accurately detected from video,
action recognition based on trajectories is nontrivial [23].
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Invariants from these trajectories have been used for action
classification [21], [26]. Most previous action recognition
methods rely on foreground and background segmentation.
Space-time shape [27], motion object [25], and motion history
volume [24] have been used in action detection in situations
where a relatively clean silhouette could be extracted. Motion
patterns have also been widely used to find actions, because
motion is resistant to clothing change. Motion histogram is
used for detecting actions in movies [20]. Spatial structure
of motion field can be included to improve the performance,
which has been used to detect human actions from a dis-
tance [11]. Properly formulated, motion can also be matched
without explicit motion estimation [12]. Recently, we propose
a motion matching method for action detection using shape
flows [31]. Even though motion is a reliable feature for static
or slow motion camera settings, large camera motion will
introduce a good deal of difficulty for motion based action
recognition systems. Appearance based schemes can be used
to relieve the problem. In such schemes, an appearance model
is explicitly matched to a target video sequence for action
detection. One approach is to recognize action based on body
part model [13]–[15]. Detecting human body configuration
based on smaller local features is another appearance matching
method [8], [10], [19], [22]. Recently, shape models based on
superpixels and tree relations among parts are used to find
actions in clutter [30].

In this paper, we follow the appearance matching direction,
and go on to propose and investigate a convex method for
video sequence matching. Instead of using body parts, we
match frames by using easily detected local features, with
an intra-frame pairwise feature matching constraint and an
inter-frame position constraint over a longer time interval, thus
enabling the scheme to detect complex actions.

II. Matching Templates to Video

We formulate the sequence matching problem as follows.
Assume that there are n templates extracted from a reference
video sequence, which represent key poses of an object in
some specific action. We label the templates from 1 to n.
Template i is represented as a set of feature points Si, a
feature vector for each feature point and the set of neighboring
pairs Ni. Set Ni consists of all the pairs of feature points in
Si connected by edges in the Delaunay graph of Si. Fig. 1
illustrates intra-frame and inter-frame constrained deformable
video matching. Matching a template sequence to a video
is formulated as an optimization problem. We search for
a matching function f to minimize the following objective
function:

min
f

⎧⎨
⎩

n∑
i=1

∑
s∈Si

Ci(s, f i
s) + λ

n∑
i=1

∑
{p,q}∈Ni

d(f i
p − p,

f i
q − q) + µ

n−1∑
i=1

d(s̄(i+1) − s̄i, f̄ (i+1) − f̄ i)

}
.

Here, Ci(s, f i
s) is the cost of matching feature point s in

template i to point f i
s in a target frame; f̄ i and s̄i are centers of

Fig. 1. Deformable video matching. In this example, template i and template
i+1 match the target frames i0 +�i and i0 +�i+1. The matching is constrained
by both intra-frame feature spatial layout and inter-frame object center relative
location.

the matching target points and template points, respectively,
for the ith template. The first term in the objective function
represents the cost of a specific matching configuration. The
second and third terms are intra-frame and inter-frame reg-
ularization terms respectively. The coefficients λ and µ are
used to control the weight of the regularization terms. In this
paper, we focus on problems in which d(·, ·) is defined as
an L1 norm. As will be shown later, in this case a linear
programming relaxation of the problem can be constructed. To
simplify the matching process, we enforce that target points
for one template cannot be dispersed into several target frames.
The matching frame for template i is specified as i0+ �i, in
which i0 is a start frame number and �i is the time stamp of
a template frame.

The above optimization problem is non-linear and usually
non-convex, because matching cost functions Ci(s, t) are usu-
ally highly non-convex with respect to t in real applications.
Searching for the optimum of a non-convex function is hard
because many local minima exist. Simple greedy methods are
easily trapped in a locally best solution. On the other hand,
exhaustive search is infeasible for a large scale problem. In
the following, we discuss feature selection and methods to
cast the non-convex optimization problem into a sequential
convex programming problem, so that a robust and efficient
optimization solution can be obtained.

A. Features for Matching

To match articulated objects, we need to choose features
that are at the same time not sensitive to colors and robust to
deformations. Even though different feature types can be used,
here we use edge features to demonstrate the usefulness of
the matching scheme. Edge maps have been found to be very
useful for object class detection, especially matching human
objects [10]. To increase matching robustness, instead of di-
rectly matching edge maps, we match a transformed edge map.
A distance transform [29] is applied to turn edge maps into
a greyscale representation in which values are the distances
to the nearest edge pixels. The distance transform image is
then fully rectified to generate a truncated distance transform
image. Fig. 2(c) and (d) are the truncated distance transform
of the edge maps of the images in Fig. 2(a) and (b). Small
image patches on these truncated distance transform images
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Fig. 2. Log-polar features. (a) and (b) Test images. (c) and (d) Truncated
distance transform images. (e) Log-polar bins. (f), (g), and (h) Log-polar
features at locations 1, 2, and 3, respectively.

Fig. 3. Matching using log-polar features. (a) and (b) Starting and ending
frames of the template action. (c) and (d) Starting and ending frames of a
target action. (e) and (f) Starting and ending frames of another target action.
(g) and (h) Template mesh and features overlaid on top of the template images.
(i) and (j) Matching using a greedy method. (k), (l), (m), and (n) Matching
using successive convex matching. Blue circles in (i)–(n) are matched target
points. The yellow crosses indicate the potential target points for each site
in the templates. Pairwise matched features themselves are not enough for
reliable matching.

are found to provide good features in matching. To make
the local features incorporate more context, we calculate the
log-polar transform of the distance transform image centered
on selected feature points in the target and template images.
Log-polar transform re-samples the image centered at a given
point using log-polar coordinates. The coordinate transform
from the Euclidean frame xy to the log-polar frame rθ is

r = α ln((x − x0)2 + (y − y0)2)

θ = tan−1((y − y0)/(x − x0))

where (x0, y0) is the center of transformation and α is a
constant coefficient. Fig. 2(e) shows a typical log-polar par-
tition of a circular area into bins assuming that the log-polar
coordinates are linear. In this example, r has 10 levels, θ has
12 levels, and α is 6. The log-polar transform simulates the
human visual system’s foveate property and puts more focus
in the center view than the periphery views. This feature is
similar to the blurred edge features in [7] for object class
detection. Fig. 2(f)–(h) show log-polar features for points at
locations 1, 2, and 3 in Fig. 2(c) and (d). Here, we abuse the
notion of θ; we also use θ to denote its discrete index. Even
though the object deforms, the corresponding local features
at locations 1 and 2 are quite similar, while they are distinct
from features at other locations such as the one at location 3.

Fig. 3 illustrates an example of matching log-polar features.
This example also illustrates how the proposed successive
convex matching finds similar actions. Before going into
details of the algorithms, we show the context and application
using a comparatively simple example. We wish to find the
correspondence between the target object in Fig. 3(c)–(f) and
the template object in Fig. 3(a) and (b). As shown in Fig. 3(g)
and (h), log-polar features are computed on randomly selected
edge pixels on the template object. Fig. 3(i) and (j) show the
greedy matches using the log-polar feature for the fitness im-

ages. For each template point, greedy matching finds the target
point with the lowest matching cost. The matching cost is
simply the Euclidean distance between the template log-polar
feature and the target feature. The log-polar feature increases
robustness in matching but nevertheless, without a robust
scheme, the matching is still very likely to fail. Using the
proposed successive convex matching we incorporate global
spatial constraints and thus achieve more robust results—the
result of the convex matching for this example is shown in
Fig. 3(k)–(n).

B. Linear Programming Relaxation and Simplex Method

In this section, we propose methods to relax the original
optimization problem into a sequence of simpler linear pro-
grams which can be efficiently solved. The following scheme
is extended from the single frame object matching scheme
[28].

The first step of linear relaxation is to linearize each term
in the objective function. To linearize the matching cost term,
we select a set of basis target points for each feature point in
a template. Then, a target point can be represented as a linear
combination of these basis points, e.g., f i

s =
∑

t∈Bi
s
wi

s,t · t,
where s is a feature point in template i, and Bi

s is the basis
target point set for s. We will show that the “cheapest”
basis set for a feature point consists of the target points
corresponding to the matching cost surface’s lower convex
hull vertices. Therefore, Bi

s is usually much smaller than the
whole target point set for feature point s. This is a key step
to speed up the algorithm. We then represent the cost term as
a linear combination of the costs of basis target points. For
template i, the matching cost term can thus be represented as∑

s∈Si

∑
t∈Bi

s
wi

s,tC
i(s, t). A standard linear programming trick

of using auxiliary variables can be used further to turn L1

terms in the objective function into linear functions [16]: we
represent each term in | · | as the difference of two non-
negative auxiliary variables x+, x−, y+, y−, u+, u− or v+

and v−. Substituting this into the constraint, we replace the
term in the objective function with the summation of two
auxiliary variables. In our formulation, the summation equals
the absolute value of the original term when the linear program
is indeed optimized.

The complete linear program is written as

min

⎧⎨
⎩

n∑
i=1

∑
s∈Si

∑
t∈Bi

s

wi
s,tC

i(s, t) +

λ

n∑
i=1

∑
{p,q}∈Ni

(xi+
p,q + xi−

p,q + yi+
p,q + yi−

p,q) +

µ

n−1∑
i=1

(ui+ + ui− + vi+ + vi−)

}

s.t.
∑
t∈Bs

wi
s,t = 1 ∀s ∈ Si i = 1, ..., n

xi
s =

∑
t∈Bi

s

wi
s,t · x(t) yi

s =
∑
t∈Bi

s

wi
s,t · y(t)

xi+
p,q − xi−

p,q = xi
p − x(p) − xi

q + x(q)
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Fig. 4. Example of convex relaxation. (a) and (b) Template images. (c) and (d) Target images. (e) and (f) Feature points and template graph. (g) and (h)
Matching result. (i), (j), (k), (l), (m), and (n) Matching cost surfaces for the sites on the template. (o), (p), (q), (r), (s), and (t) Convexified matching cost
surfaces.

yi+
p,q − yi−

p,q = yi
p − y(p) − yi

q + y(q)

∀{p, q} ∈ Ni i = 1, ..., n (1)

ui+ − ui− =
1

|Si|
∑
s∈Si

[xi
s − x(s)] − 1

|Si+1|
∑

s∈Si+1

[xi+1
s − x(s)]

vi+ − vi− =
1

|Si|
∑
s∈Si

[yi
s − y(s)] − 1

|Si+1|
∑

s∈Si+1

[yi+1
s − y(s)]

i = 1..n − 1

all variables ≥ 0.

Here functions x(s) and y(s) extract the x and y components
of point s. The matching result f i

s = (xi
s, y

i
s). It is not difficult

to verify that either xi+
p,q or xi−

p,q (similarly yi+
p,q or yi−

p,q, ui+

or ui− and vi+ or vi−) will become zero when the linear
program achieves its minimum; therefore, we have xi+

p,q+xi−
p,q =

|xi
p − x(p) − xi

q + x(q)|, yi+
p,q + yi−

p,q = |yi
p − y(p) − yi

q + y(q)|,
and so on. The second and third regularization terms in the
linear program objective function equal the corresponding
terms in the original non-linear formulation. In fact, if Bi

s
contain all the target points and wi

s,t are binary variables
(0 or 1), the LP becomes an integer programming problem
which exactly equals the original non-convex problem. But,
integer programming is as hard as the original non-linear op-
timization, and therefore we are most interested in the relaxed
linear program. The linear program has close relation with the
continuous extension of the matching problem: the continuous
extension is defined by first interpolating the matching cost
surfaces Ci(s, t) piecewise-linearly with respect to t and then
relaxing feasible matching points into a continuous region (the
convex hull of the basis target points Bi

s).

This linear program has very similar properties to the ones
in [28]. The linear relaxation optimizes an approximation
convex problem that replaces the matching cost surface of each
site with the lower convex hull. We, therefore, can use only the
target points and matching costs corresponding to the lower
convex hull vertices to construct the linear program without
changing the optimum solution. Since the number of lower
convex hull vertices is usually much fewer than the number
of the matching target points, the searching is much more
efficient.

The initial basic variables can be selected in the following
way.

1) Only one wi
s,t is selected as a basic LP variable for each

site s in template i.
2) xi

s, yi
s are basic LP variables.

3) Whether xi+
p,q or xi−

p,q, yi+
p,q or yi−

p,q, ui+ or ui− and vi+ or
vi− are basic variables depends on the right-hand side
of the constraint; if the right-hand side of a constraint
is greater than 0, the plus term is a basic variable;
otherwise the minus term becomes a basic variable.

Similar to the equivalent property in [28], if we use a
simplex method to optimize the linear program, we will search
through a sequence of triangles in each target frame. For each
site i, the proposed LP relaxation searches only the triangles on
the target points corresponding to lower convex hull vertices,
in an efficient energy descent manner. (And note that the
triangles may be degenerate.) Fig. 4 illustrates the solution pro-
cedure of the simplex method for an example two-frame video
matching problem. In this simplified example, three features
points are selected on the object in Fig. 4(a), (b) respectively
and form triangular graph templates, shown in Fig. 4(e), (f).
Fig. 4(c) and (d) show the target object in clutter. Fig. 4(g)
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Fig. 5. Searching process of the linear program for Template 1 (left) and Template 2 (right).

and (h) show the matching result. Fig. 4(i), (j), (k), (l), (m),
and (n) show the matching cost surface for each of the six
points in the template: the matching cost surfaces are highly
nonconvex. So directly searching in the cluttered images for
the target is a hard problem. Based on the linear relaxation, the
nonconvex matching cost surfaces are approximated with their
lower convex hulls. Fig. 4(o), (p), (q), (r), (s), and (t) are the
lower convex hull surfaces for the respective cost surfaces. As
shown in the figure, the convexified surfaces are much simpler
than the original cost surfaces and at the same time keep
the main structures such as the dominant local minima and
the trend of the surfaces. Finding targets using this relaxation
is efficient. The searching process (selected from 32 stages)
for each site is illustrated in Fig. 5. Each row corresponds
to a site in the templates. The blue dots indicate the target
points located at the coordinates of the lower convex hull
vertices. The searching involves only these target points at
each iteration. During the search, the linear program updates
a set of basic variables. The basic variables for w correspond
to a selection of target points. To illustrate the solution process,
we connect the points corresponding to the basic variables by
lines. The small rectangle is the weighted linear combination
of the target points corresponding to the basic variables at each
stage. It indicates the (float) current estimation of the target
location for a site. As expected, the proposed LP only checks
triangles (filled-blue) or their degenerates (lines or points)
formed by basis target points. When the search terminates,
the patch generated by the basic variables for each site must
correspond to vertices, edges or facets of the lower convex
hull for each site. As shown in this example, a single LP
relaxation usually has a matching result near the target but
the initial match is usually not completely accurate. We can
refine the result by successively “convexifying” the matching
cost surfaces.

C. Successive Relaxation

As discussed above, a single LP relaxation approximates
the original problem’s matching cost functions by their lower
convex hulls. In real applications, several target points may
have equal matching cost and, even worse, some incorrect
matches may have lower cost. In this case, because of the

Fig. 6. Successive convex matching.

convexification process, many local structures are removed
which on the one hand facilitates the search process by
removing many false local minimums and on the other hand
might make the solution not exactly locate on the true global
minimum. A successive relaxation method can be used to
solve the problem. Instead of one-step LP relaxation, we can
construct linear programs iteratively based on the previous
searching result and gradually shrink the matching trust region
for each site. A trust region for one site is a rectangle area
in the target image. Such a scheme can effectively solve the
coarse approximation problem in a single LP relaxation step.

Introducing a trust region shrinking technique, we go on to
use control points to anchor trust regions for the next iteration.
We keep the control point in the new trust region for each site
and we allow the boundary to shrink inward. If the control
point is on the boundary of the previous trust region, other
boundaries are moved inward. For the first LP relaxation,
the trust region is the whole target image. Then we refine
the regions based on previous LPs solution. After we shrink
the trust region, the lower convex hull may change for each
site. Therefore, we have to find the new target basis and solve
a new LP.

We select control points using a consistent rounding process.
In consistent rounding, we choose a site randomly and check
all the possible discrete target points and select the one that
minimizes the nonlinear objective function, by fixing other
sites’ targets as the current stage LP solution. (This step is
similar to a single iteration of an ICM algorithm by using
LP solution as initial value.) We also require that new control
points have energy not greater than the previous estimation.

D. Scale Invariant Formulation

The above linear formulation is not scale invariant even
though it can handle small scale changes. One solution to
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the problem is that we apply successive convex matching in
multiple scales and use the best matching score at each instant
to quantify the similarity of an action to the template. We
usually need to search through only a few scales because
the matching is deformable. For short video sequences, the
simple method is applicable, but the increase in complexity
may greatly slow down the processing of a long video. We
extend the convex matching method so that it is invariant
to scale and has a complexity independent of the number of
discrete scale levels. In the following, we assume that objects
have small rotation changes, which is true for most action
videos.

The scale invariant video matching can be obtained by
optimizing the following modified energy function:

min
f,l

⎧⎨
⎩

n∑
i=1

∑
s∈Si

Ci(s, f i
s) + λ

n∑
i=1

∑
{p,q}∈Ni

d(p − q,

l · (f i
p − f i

q)) + µ

n−1∑
i=1

d(s̄(i+1) − s̄i, l · (f̄ (i+1) − f̄ i))

}
(2)

where l is a positive scaling factor. We, therefore, have to find
the point correspondence and scale simultaneously. Scaling
target vectors is necessary; the seemingly simple formulation
that scales the template vectors is in fact wrong because it
introduces a strong bias for small objects. Here we assume
that the matching cost from a template point to a target
point is determined by only their locations, e.g., the matching
cost is scale invariant. The matching cost scale invariance
does not imply that the features have to be invariant. A
simple way of computing invariant cost using non-invariant
features is to compute the feature distances at a sequence of
discrete scales and use the minimum as the invariant cost.
The above nonlinear optimization is hard to solve directly. We
can approximate it with a linear formulation involving discrete
scales; the linear approximation is further relaxed into linear
program which can be efficiently solved.

To linearize the objective function, we introduce a new
assignment variable zi

s,t,lk which indicates the true or false of
the matching from template point s to target point t at discrete
scale lk; if the matching is true z equals 1 and otherwise 0.
We quantize the scale into K discrete values l1, l2, ..., lK. For
example, we can quantize scale from 0.5 to 2 into 7 values with
0.25 step size. Scale dependent assignment variable z and scale
independent assignment variable w has the following relation
assuming that w is strictly 0 or 1:

wi
s,t =

K∑
k=1

zi
s,t,lk .

Recalling that
∑

t∈Bi
s
wi

s,t = 1, z is therefore guaranteed to
have a single 1 for each template point. The term l · f i

p can
now be approximated by the linear combination

l · f i
p ≈

K∑
k=1

∑
t∈Bi

p

lk · t · zi
p,t,lk .

Based on the definition of f̄ i
p, we also have

l · f̄ i
p ≈ 1

|Si|
∑
p∈Si

K∑
k=1

∑
t∈Bi

p

lk · t · zi
p,t,lk .

We further need to make sure that each template point
chooses the same scale in matching by introducing the
following constraint:

K∑
k=1

∑
t∈Bi

s

lk · zi
s,t,lk = l ∀s, i.

If d(.) uses L1 norm, we can linearize the second and
third terms in (2) using the auxiliary variable trick. Includ-
ing other linear terms in (1), we have an integer linear
program which is equivalent to the original optimization
in (2) except the approximation introduced by the scale
quantization. We can further relax the integer program into
a linear program by dropping the binary constraints for both
w and z.

The relaxed linear program has similar properties to the
non-scale-invariant version and can be further simplified using
the lower convex hull property. It is not hard to verify that
only the variables of w and z corresponding to the lower
convex hull vertices of each matching cost surface need to
be included; the redundant variables can be removed without
changing the linear program solution. The scale also has a
similar lower convex hull property. For this simple formulation
in which the matching cost is invariant to scale changes, we
only keep the variables of z that correspond to the boundary
scales (the maximum and minimum scales). After relaxing
z into floating point number, we simulate continuous scale
changes in a specific interval.

The relaxed linear program needs to be refined to match
the target accurately. The successive approximation method
can still be applied. Trust region shrinkage can be applied to
both the template points and the scale. In our implementation,
we only shrink trust regions of the template points; the scale
is always optimized in the largest range.

The average complexity of a linear program is roughly
proportional to the number of constraints and logarithm of the
number of variables [16]. The number of constraints of the
proposed linear program has nothing to do with the number
of target feature points. Using the lower convex hull trick, the
number of variables is also largely independent of the number
of target points. As mentioned before, the complexity of the
linear program is constant to the number of discrete scales.
The refinement procedure usually takes constant number of
iterations. The average complexity of the proposed linear
program is therefore a low order polynomial of the number
of templates points and largely independent of the number of
target candidates. This makes the proposed method efficient
in searching through large range with huge number of target
feature points.

The proposed method is not explicitly invariant to temporal
scale changes. Fortunately, most actions have similar temporal
scales constrained by the physics of movement. For videos in
normal temporal sampling rate, the temporal scale changes
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are usually small. The temporal scale changes result in mis-
alignment of the template images with the target video frames.
Because of the movement continuity, the mis-alignment is
reflected as the distortion of the shapes of objects at specific
instants. Since the proposed method uses deformable template
matching, such distortion does not cause problems as shown
in our experiments.

E. Action Detection

By using the proposed scheme, we register the template
pose sequence to the targets in videos. Because of the center
continuity constraint, the matching finds objects and poses
consistently in the spatial locations through time. As will be
shown in the experiments, the location consistency constraint
is important for finding actions in cluttered videos. After the
registration process, we locate an object that has potential to
perform a specific action at an instant. We need further to ver-
ify whether the match is a real target. In verification, we com-
pare the matching targets with templates to decide how similar
these two constellations of matched points are and whether the
matching result corresponds to the same action. We use the fol-
lowing quantities to measure the difference between the tem-
plate and the matching object: the first measure is D, defined
as the average of pairwise length changes from the template to
the target. To compensate for the global deformation, a global
affine transform A is first estimated based on the matching
and then applied to the template points before calculating D.
Further, measure D is normalized with respect to the average
edge length of the template. The second measure is the average
template matching cost M using the log-polar feature. The
total matching cost is simply defined as M + αD, where α

has a typical value of ten if image pixels are in the range
of 0–255. Experiments show that only about 100 randomly
selected feature points are needed in calculating D and M.

III. Experiment Results

A. Matching Random Sequences

In the first experiment, we test the proposed scheme with
synthetic images. In each testing, three 128 × 128 coupled
random template images are generated. Each template image
contains 50 random points. The 256 × 256 target images
contain a randomly shifted and perturbed version of the data
points. The perturbation is uniformly disturbed in two settings:
0–5 and 0–10. The centers of the target are also randomly
perturbed in the range 0–5. We use the log-polar feature in
all our experiments. We compare our result with a greedy
searching scheme. Other standard schemes, such as BP, cannot
be easily extended to solve the minimization problem in this
paper. Instead we use BP to match each image pair separately
as a benchmark in comparison. Each experiment is repeated
in a deformation and clutter setting over 100 trials. Fig. 7
shows the average matching error distribution in different
assumed-error regions. A good performance should have high
values on the left and low values on the right. When both the
noise level and distortion level are low, the greedy scheme
has comparable performance. Since there is one single target

Fig. 7. Average matching error distribution for random sequence test I.
Three-frame random sequences are used in testing. In each template frame,
there are 50 template points. In the target images, their locations are shifted
and randomly perturbed to simulate deformation ranging from 5 to 10. 50,
100 and 150 clutter points are added into the target images. The normalized
error histograms for the proposed method (LP), the greedy search method
(Greedy) and belief propagation method (BP) are illustrated.

in each image, BP has similar performance as the proposed
scheme for experiment settings with low deformation. The
performance of greedy schemes degrades rapidly when the
levels of noise and distortion increase. In these cases, the
proposed scheme greatly outperforms the greedy scheme. It
is also better than baseline BP when there is large distortion.
Fig. 8 shows the comparison results of matching random
sequences in a different outlier setting which introduces an
extra duplicated and perturbed object into the second target
frame. For BP and greedy method, matching error for the
second template frame is the smaller one of matching either of
the two objects in the target frame. In this test, the proposed
sequence matching scheme yields much better result. A center
continuity constraint is necessary for correct matching in
cutter.

B. Matching Actions in Video

Fig. 9 shows the results of matching for real images with
the proposed scheme, the greedy scheme and the BP matching
for single image pairs. The proposed scheme still works well
in cluttered images, while the greedy scheme and BP fail to
locate the target. BP is also about 100 times slower.

We further conducted experiments to search for a specific
action in video. In these test videos, a specific action only
appears a few times. The template sequence is swept along
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Fig. 8. Average matching error distribution for random sequence test II. Apart from similar settings to random sequence test I, we add another duplicated
object in the second target frame to simulate multiple objects. The normalized error histograms for LP, the greedy search and belief propagation are illustrated.

Fig. 9. Matching flexible objects. (a) and (b) Templates. (c) and (d) Target images. (e) and (f) Edge map and target feature points. (g) and (h) Matching
with the proposed scheme. (i) and (j) Matching with the greedy scheme. (k) and (l) Matching with BP for each image pair.

the time axis with a step of one frame, and for each instant
we match video frames with the templates.

We first applied the matching scheme to detect actions in
a 1000-frame fitness sequence. As shown in Fig. 10, two
actions are correctly detected at the top of each short list.
Fig. 11 illustrates how the number of key frames affects the
performance of the action detector. As illustrated, the detection
result using one key frame is worse than the result in Fig. 10
where we use two key frames; the detection result using
three key frames does not differ much from the result using
two key frames. For simple actions, a small number of key
frames, e.g., two or three, are found sufficient. More key
frames would not improve the performance substantially. The
proposed method has a complexity largely decoupled from
the number of target candidates and therefore the matching
time at each instant is almost constant for different type of
videos. With 3 key frames and about 100 feature points in each

template frame, the running time for matching the template at
each instant in the target video is about 1 s using a 2.8 GHz
machine. We further test the proposed method on detecting
specific sign language gestures. Sign language is challenging
because of the very subtle differences. Fig. 13 shows a search
result for the gesture “go” in a 500-frame video. Fig. 13(a)
shows the two key poses used in searching. The templates are
generated from a different subject. Fig. 13(b)–(g) show the
matched starting postures and ending postures ranked with
their matching costs. The proposed scheme locates both of
the two appearances of the gesture in the video in the top
two ranks. Fig. 14 shows another searching result for the
gesture “work” in a 1000-frame video. The two gestures in the
video are successfully located in the top two rank positions.
Fig. 15 shows a searching result for the gesture “year” in a
1000-frame video. Five appearances of the gesture are located
in top six of the short list. One false detection is inserted
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Fig. 10. Finding actions in a 1000-frame fitness sequence. (a) and (i) Template images for 2 actions. (b)–(h) and (j)–(p) Short lists ranked by the matching
costs. The 2 right-leg-out actions and 1 right-arm-out-left-leg-out action are ranked at the top of each short list.

Fig. 11. Action detection using different number of key frames. (a) and (g) 1-frame and 3-frame templates. (b)–(f) and (h)–(l) Action short lists using the
1-frame and 3-frame templates respectively.

Fig. 12. Template images in gesture detection. (a)–(c) Starting and ending template frames for Figs. 13–15.

Fig. 13. Searching gesture “go” in a 500-frame sign language sequence. (a) Templates. (b)–(g) Top 6 matches.
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Fig. 14. Searching gesture “work” in a 1000-frame sign language sequence. (a) Templates. (b)–(g) Top 6 matches.

Fig. 15. Searching gesture “year” in a 1000-frame sign language sequence. (a) Templates. (b)–(g) Top 6 matches.

Fig. 16. Searching “kneeling” in a 800-frame indoor sequence. (a) Templates. (b)–(n) Top 13 matches.

at rank 5. Figs. 16 and 17 show experiments to locate two
actions, kneeling and hand-waving, in indoor video sequences
of 800 and 500 frames respectively. The two-frame templates
are from videos of another subject in different environments.
The videos are taken indoors and contain many bar structures
which are very similar to human limbs. The proposed scheme
finds all the two kneeling actions in the test video in the
top two of the short list; and all the waving hand actions
in the top 11 ranks. Fig. 18 shows the result of search
for a “throwing” action in a 2500-frame baseball sequence.
Closely interlaced matching results are merged and our method
finds all four appearances of the action at the top of the
list.

Fig. 19 shows the result of detecting ballet actions in
cluttered background. The sequence involves large camera

motion. Two key frames are used as templates. We show the
first frames of the actions detected in a short list. The short
list has been shortened by applying non-minimum suppression
to the matching costs. Referencing the matching cost curve in
Fig. 19, 6 action segments out of 8 are detected in the top 12
of the short list with 2 false detections. The proposed matching
method performs well.

We applied Chamfer matching to the same ballet video se-
quence using the same template. The Chamfer matching result
is shown in Fig. 20. Chamfer matching gives much worse
result than the proposed method. Since Chamfer matching uses
a rigid template, it has difficulty in distinguishing between
smooth object shape deformation and shape change caused
by a distinctive action. It also tends to match templates to
cluttered backgrounds instead of true objects.
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Fig. 17. Searching “right hand waving” in a 500-frame indoor sequence. (a) Templates. (b)–(n) Top 13 matches.

Fig. 18. Searching “throwing ball” in a 2500-frame baseball sequence. (a) Templates. (b)–(g) Top 6 matches.

Fig. 19. Finding actions in a 2500-frame ballet sequence. The sequence involves complex actions, moving camera and cluttered background. The first two
images in the list are first and last frames of the template; the following images form the short list ranked by the matching costs (non-minimum suppression
is applied to remove some close detections). The matching cost curve is shown below the images, with the red dots indicating the true action locations.
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Fig. 20. Chamfer matching result using the same template as Fig. 19. Chamfer matching performs poorly due to the clutter background and object deformation.

Fig. 21. Finding another action in the 2500-frame ballet sequence. The proposed method accurately locates the action at the top of the short list.

Fig. 21 shows the action detection result for a different
ballet action. The proposed method accurately detects the
two instances of the action in the ballet video. Note that
the objects at the two action instants have different scales.
Since the proposed method is scale invariant, it successfully
detects both of the instances. Fig. 22 shows action detection in
very cluttered background. The proposed method successfully
found the two segments of actions at the top of the short list.
We found that false detection in our experiments is mainly due
to similar structures in the background near the subject. Very
strong clutter is another factor that may cause the matching
scheme to fail. Prefiltering or segmentation operations to
partially remove the background clutter can further increase
the robustness of detection.

We further test the proposed action detection method with
the KTH dataset [18] which includes six action classes. We
select templates with two key poses from the first video
clip in each category. Fig. 23 shows examples of the two-
key-frame templates in the first row of each sub-figure. We
select regions in the two-frame templates for each of the six

actions. Graph templates are automatically generated using
randomly selected edge points in the region of interest. The
templates are then used to compare with each testing video
clip at each instant using the proposed matching scheme
and the minimal matching cost is used as the matching
cost for a video clip. Fig. 23 illustrates some matching
examples. Fig. 24 shows the performance of action detection.
The equal precision and recall point is from 65% to 80%.
The detected template clip is removed from the short lists
when computing the recall-precision curves. As shown in
Fig. 24(a)–(f), confusion happens for similar actions. Clapping
is quite similar to the arm-down action in hand waving.
Boxing tends to confuse with hand waving and clapping
because it matches half body movement in these actions. The
action detection method performs quite well considering the
similarity of these actions, a large variety of actors, and that
we use a single template for each action class. Comparing
with Chamfer matching whose result on the same dataset
is shown in Fig. 25, the proposed method performs much
better.
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Fig. 22. Search an action in a 1600-frame gymnastic video. The first two images show the templates of the action. The non-minimum suppressed short list
is shown for the located actions. The proposed method successful locates two action segments in the video.

Fig. 23. Matching examples. In (a), (b), (c), (d), (e), and (f) top rows are templates and bottom rows are matching results.

Fig. 24. Action detection using the proposed method on the KTH dataset. There are six action classes (clapping, waving, boxing, jogging, and running) and
599 video clips. (a)–(f) The rank of videos for each action detection test. Red dots indicate the videos that contain the target action. (g)–(l) Recall-precision
curves.
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Fig. 25. Action detection using Chamfer matching on the KTH dataset. (The template clips are not removed from the short lists.)

Fig. 26. Confusion matrix for each action class. We randomly select 1 video
clip from each class as a template and use the other 593 video clips for testing.

Fig. 27. Comparison with other reported results on the KTH dataset.

We can also construct an action classifier using the six
action templates. We categorize a video clip into an action
class if it matches the action exemplar with the smallest cost.
The confusion matrix of the proposed method is shown in
Fig. 26. The average classification accuracy is 68.61%. In
this experiment, we use only one training sample from each
action class and test on all the other videos in the dataset. The
comparison with other methods is shown in Fig. 27.

IV. Conclusion

We have proposed a successive convex programming
scheme to match video sequences using intra-frame and
inter-frame constrained local features. By convexifying the
optimization problem sequentially with an efficient linear
programming scheme which can be globally optimized in each

step, and gradually shrinking the trust region, the proposed
method is much more robust than greedy searching schemes.
Different from other robust matching methods, successive
convex matching has unique features: it involves a very small
number of basis points and thus can be applied to large-scale
problems that involve a large number of target points. We
included experiments demonstrating the success of the pro-
posed scheme in detecting specific actions in video sequences.
Because the template deforms, this scheme can deal with large
distortions between the template and the target object. In future
work, we will investigate efficient implementations so that the
proposed method can be used in real-time applications.
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