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Abstract—A novel consistent max-covering method is proposed for human pose

estimation. We focus on problems in which a rough foreground estimation is

available. Pose estimation is formulated as a jigsaw puzzle problem in which the

body part tiles maximally cover the foreground region, match local image features,

and satisfy body plan and color constraints. This method explicitly imposes a

global shape constraint on the body part assembly. It anchors multiple body parts

simultaneously and introduces hyperedges in the part relation graph, which is

essential for detecting complex poses. Using multiple cues in pose estimation, our

method is resistant to cluttered foregrounds. We propose an efficient linear

method to solve the consistent max-covering problem. A two-stage relaxation finds

the solution in polynomial time. Our experiments on a variety of images and videos

show that the proposed method is more robust than previous locally constrained

methods.

Index Terms—Human pose estimation, consistent max covering, linear

programming.
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1 INTRODUCTION

HUMAN pose estimation has many important applications in
surveillance and human computer interaction. In these applica-
tions, rough object silhouettes can often be obtained using simple
methods such as background subtraction or color segmentation. It
is well known that the segmentation can be used to enhance the
body part detection. However, there is little work on how to use
the global shape of the foreground to constrain the body part
assembly in pose optimization. In this paper, we propose a
consistent max-covering scheme to take advantage of this global
constraint. The basic idea is that when body parts are assembled,
they should cover a region of similar shape to the object
foreground and they should follow a valid body plan. We study
how we can integrate different cues in a linear formulation which
can be efficiently solved to achieve reliable results.

For simple poses with little self-occlusion, a rough body
configuration can be extracted by the skeleton operation on clean
silhouettes [1]. Machine learning methods have also been studied
for pose inference using silhouettes [2], [3]. With sufficient training
data, fast pose regression can be achieved. The challenge of
machine learning methods is that they have to deal with a large set
of training samples and high-dimensional feature space. Dimen-
sionality reduction methods such as probabilistic principal
component analysis [4], manifold learning [5], and Gaussian
process dynamical model [6] have been used to relieve the
dimension explosion problem. These methods are currently used
for detecting the restricted classes of poses and to work with clean
silhouettes. Shape matching methods have also been widely used
in pose estimation [7], [8], [9]. Shape context matching [7] and
Chamfer matching [8] are popular methods for finding human

poses. Shape matching methods are resistant to clutter, but have
high complexity when there are a huge number of exemplars.
Hierarchical search trees [8] [18] and locality sensitive hashing [9]
have been studied to improve the search efficiency.

Apart from these aforementioned top-down approaches,
bottom-up pose estimation methods have also been intensively
studied. In the bottom-up methods, body part candidates are first
detected and then assembled to fit the image observations and a
body plan. This approach is most related to our method. Using
silhouettes, an efficient pose estimation method [10] has been
studied based on a tree model and posterior sampling. This
method is resistant to the foreground clutter. One difficulty of this
formulation is the “overcounting” issue, which happens when
multiple body parts occupy the same pixel in an image. To relieve
the problem, a separate sampling step is used to generate a number
of human poses based on the probability estimated in the tree
inference stage. Tree structure models can be learned adaptively
[26] to achieve reliable results. Other stochastic searching methods
[11], [12] have also been used in pose optimization.

Nontree models can be used to enforce tighter structural
constraints. A widely used scheme is to include the pairwise
constraints between pair of arms and legs to penalize overlapping
body parts. These constructions introduce cycles into the body part
relation graph; the inference on such loopy graphs is generally
NP-hard. Different methods are proposed to solve the hard
optimization problem. A branch and bound method [19] is
proposed to obtain an exact solution. More efficient approximation
methods such as convex programming [13], [15] or belief
propagation (BP) [16] have also been proposed to tackle the
problem. These nontree methods use local pairwise constraints and
have no mechanisms to control the global structure. For complex
poses, local constraint is not sufficient to resolve the ambiguity in
pose estimation. Without a global cue, it is hard to decide whether
two arms or legs should be assigned to the same location or be
apart. The uniform penalty used in traditional nontree methods
relieves the problem, but it also introduces undesired penalty to
truly overlapping body parts.

In this paper, we follow the body part assembly scheme and
propose a novel consistent max-covering method for human pose
estimation [23]. We assume that a rough foreground potential map
is available. Differently from previous locally constrained meth-
ods, our method incorporates global object shapes into pose
optimization. In our formulation, pose estimation becomes the
problem of covering an object foreground map with a set of body
part tiles: They maximally cover the object foreground, match
image local appearance, and are consistent in terms of the body
linkage plan and other symmetry constraints. Max covering with
the consistency constraint is denoted as consistent max covering. It
introduces high-order relations among all of the body parts since
each body part may influence others when forming a covering. The
high-order body part correlation is essential for complex pose
estimation when self-occlusions or other part interactions occur.
This method also solves the “overcounting” problem. By encoura-
ging the body parts to cover the object foreground, we remove the
undesired penalty on the truly overlapping body parts in pose
estimation. In this paper, we formulate the consistent max covering
as a linear optimization and we propose an efficient solution using
a two-stage relaxation. By incorporating multiple cues in pose
estimation, the proposed method is resistant to occlusion and
works with low-quality foreground estimation or soft object
foreground mask. Our experiments on a variety of images and
videos show that the proposed method is robust and efficient in
human pose estimation.
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2 RELATED WORK

Object foreground estimation has been used in different ways to

improve human pose estimation. Ferrari et al. [20] use rough

foreground segmentation to improve the local body part detection

for human upper body pose estimation. Mori and Malik [7] use

superpixels to find salient body parts in images. Ren et al. [13]

propose another approach for human pose estimation in static

images using superpixels. In this method, an integer program is

formulated and relaxed to linear program for pose optimization.

Ramanan [14] proposes an effective method to train local body part

detectors using a soft segmentation; a tree structure model is used

in the optimization. Johnson and Everingham [21] propose another

method to use object segmentation to enhance the local body part

detection; the pose estimation follows the tree structure inference

method in [14]. In these methods, the segmentation information

has not yet been fully used; the object foreground estimation is

used as a means to improve local part detection, but not

incorporated in the human pose optimization. In this paper, we

show how we can seamlessly merge the object foreground

constraint in pose optimization.
Linear methods have been receiving a lot of interest in recent

years for solving computer vision problems. These methods can be

relaxed and globally optimized. Previous linear methods for pose

estimation use pairwise or lower order constraints. Ren et al. [13]

use linear programming (LP) relaxation for pose estimation with

pairwise constraints. A linear method that uses pairwise and

triorder exclusion constraints in an augmented tree model is

studied in [15]. Differently from these approaches, our proposed

model is able to enforce higher order constraints, which are hard to

implement using previous formulations.

3 CONSISTENT MAX COVERING FOR POSE ESTIMATION

Given an object foreground map from color segmentation or

background subtraction, pose estimation can be simulated as a

jigsaw puzzle problem. In the following, we show how pose

estimation can be formulated as consistent max covering and how

we can solve it using an efficient linear method.

3.1 Body Model and Part Detection

We use the widely used 10-part body model which contains head,

torso, upper arms, lower arms, upper legs, and lower legs. Each

body part is represented as a rectangle. Our method can also be

easily extended to more complex body part shapes. The 10-part

body model and the part relation graph are shown in Fig. 1. In our

model, the basic body plan follows a tree structure. Apart from the

interactions between neighboring body parts, consistent max-

covering formulation introduces hyperedges linking the body

parts that cover the same foreground region, and the edges that

constrain symmetry body parts. The basic body plan tree is rooted

at the torso and has directional edges. The other two kinds of edges

are nondirectional.

Similarly to other bottom-up pose estimation methods, we first
locate potential body part candidates in target images so that we
can use them in the consistent max covering. We assume a fixed
object scale in this paper; when the foreground can be accurately
extracted, the object scale can be estimated and normalized
automatically. We use simple box detectors to find the body part
candidates on the edge map of the target image. Chamfer matching
is used to match body part templates to the target edge map at
different locations and rotations. Nonminimum suppression is
then used to locate the body part candidates. Since we have a
rough foreground map, the body part candidates can be further
pruned: We only keep the candidates whose average foreground
potentials are greater than a threshold. The linear combination of
the local Chamfer matching cost and the foreground covering cost
is associated with each body part candidate as the local matching
cost. A body part candidate is represented as a rectangle with a
start side and an end side.

3.2 Consistent Max Covering: The Overview

Each body part candidate covers some pixels in the object
foreground. Intuitively, the body part tiles should cover fore-
ground pixels as much as possible in a consistent manner.

Assume that we obtain a foreground estimation, and a floating-
point number from 0 to 1 is related to each image pixel to indicate
the foreground potential. The higher the potential, the more likely
it is that the pixel belongs to the object foreground. We denote the
foreground map as fx;y. The consistent max covering can be
formulated as the following optimization problem:

max
C

X
ðx;yÞ2I

rx;y � �MðCÞ � �P ðCÞ � �SðCÞ

8<
:

9=
;

s:t: rx;y ¼ fx;y; if ðx; yÞ is covered by parts; else 0

C is a body part covering;

ð1Þ

where rx;y is the covered potential at pixel ðx; yÞ with the current
body part covering C: If the pixel ðx; yÞ in the foreground I is
covered by the body parts, rx;y takes value fx;y and otherwise 0.
Therefore, the first term in the objective function equals the overall
potential covered by all the body parts. The second term MðCÞ is
the cost of matching the body parts to local image features. The
third term P ðCÞ is the degree of the body part configuration
following a human body plan. The last term SðCÞ penalizes the
color difference of symmetrical body parts: If the symmetrical
parts, e.g., upper arms, have large color difference, S has a large
value. We reverse the sign of the last three terms so that they are
minimized. �, �, and � are positive constants to control the weight
among the energy terms. This optimization thus tends to find a
consistent max covering on the object foreground.

Consistent max covering in (1) is a combinatorial search
problem. We need to find a body part configuration to optimize
the objective while satisfying the constraints. It is generally
NP-hard because of the loopy part relations introduced by the
covering terms and symmetrical relation terms. The large number
of feasible body part configurations makes naive exhaustive search
infeasible and, for such a problem, the greedy method is not
sufficient. We use a global search method to tackle this problem. In
the following, we propose an efficient linear solution.

3.3 Linear Formulation

We linearize the consistent max-covering optimization in (1) and
obtain a mixed integer linear program. It can be further relaxed
into a much simpler linear program for efficient solution.

3.3.1 Foreground Covering Potential

In (1), the covering term in the objective function is
P
ðx;yÞ2I rx;y,

which equals the total potential covered by all the body parts.

1912 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 9, SEPTEMBER 2011

Fig. 1. Left: 10-part body model. Right: Relation graph of body parts. The gray area
shows the example of a hyperedge.



Recall that r represents the covering potential at a pixel. We now

explicitly express how the variable r is related to the choice of body

part locations.
We introduce a binary indicator variable �n;i, which is 1 if

body part n selects target candidate i, otherwise 0. �n;i is

therefore a node variable that corresponds to each node of the

body graph. Since each body part only has one target location,

we need to make sureX
i2T ðnÞ

�n;i ¼ 1; 8n 2 V ;

where T ðnÞ is the target candidate set of body part n; V is the set of
all body parts; we also use V to denote the node set of the body
graph. We are now ready to specify the covering term using the
node variable �. We introduce the following constraint for the
covering variable r: X

8ðn;iÞ covers ðx;yÞ
�n;i � rx;y;

in which ðn; iÞ denotes the ith candidate for body part n. We

further need to bound rx;y to be a nonnegative number that can be

as large as the foreground potential

0 � rx;y � fx;y:

For rx;y not covered by any candidate tiles, it is set to zero. In an

example shown in Fig. 2a, there are total four body part candidates

ðn; iÞ, ðm; jÞ, ðk; pÞ, and ðk; qÞ covering the pixel ðx; yÞ. The

constraint for rx;y is therefore rx;y � �n;i þ �m;j þ �k;p þ �k;q and

0 � rx;y � fx;y.
It is not hard to verify that with the above formulation, rx;y

equals the covering potential at pixel ðx; yÞ. If at least one body part

covers the foreground pixel ðx; yÞ, to maximize the objective

function in (1), rx;y should equal fx;y, recalling that body part

indicator variable � is 0 or 1 and fx;y is between 0 and 1; if ðx; yÞ is

not covered by any part tiles, rx;y will be 0 because of the upper

bound constraint. Therefore, given such constraints,
P
ðx;yÞ2I rx;y is

indeed the overall covering potential of the body parts.

3.3.2 Image Matching Cost

Apart from the object foreground covering cost, assigning each
body part to a target location involves an image matching cost. In
this paper, the cost is the linear combination of the Chamfer
matching cost and the local covering cost. Local covering cost
equals 1 minus the average covering potential. With the binary
node assignment variable �, the total image matching cost can be
linearized as

M ¼
X

n2V ;i2T ðnÞ
cn;i � �n;i:

Here, cn;i is the image matching cost of part n at location i.

3.3.3 Body Plan Energy

A good body part assignment should have neighboring body parts
linked together: The end points of consecutive body parts are close,
and the connected limbs have similar orientations. To linearize the
spatial consistency function P ð:Þ in (1), we introduce an edge
indicator variable �n;i;m;j for each directional tree edge hn;mi;
�n;i;m;j is 1 if body part n selects candidate i and body part m takes
candidate j. The definitions of the edge variable � and node
variable � are illustrated in Fig. 2b.

Using edge assignment variable �, the total spatial consistency
cost is linearized as

P ¼
X

hn;mi2E;i2T ðnÞ;j2T ðmÞ
hn;i;m;j � �n;i;m;j;

where E is the tree edge set and the coefficient hn;i;m;j is defined as

hn;i;m;j ¼
aen;i;m;j; if n is torso;

adn;i;m;j þ b sin2ð�n;i��m;j2 Þ; otherwise:

�

Here, en;i;m;j is the euclidean distance between a proper end of a
torso candidate and the start point of an upper body part
candidate; dn;i;m;j is the euclidean distance between the end point
of part n at location i and the start point of part m at location j; �n;i
is the angle of part n at location i and sin2ð�n;i��m;j2 Þ penalizes large
angle difference for consecutive body parts; a and b are positive
weight constants.

The node variable � and the edge variable � are dependent. The
pairwise edge assignment has to be consistent with the node
assignment: Each body part appearing in different pairs must have
a unique assignment of the target candidate. To enforce the
assignment consistency, 8hn;mi 2 E, we let

�n;i ¼
X

j2T ðmÞ
�n;i;m;j; �m;j ¼

X
i2T ðnÞ

�n;i;m;j:

Recall that T ðmÞ is the set of body part candidates for part m. The
above constraints imply that

P
j2T ðmÞ �n;i;m;j ¼

P
l2T ðkÞ �n;i;k;l, k 6¼ m,

and
P

i2T ðnÞ �n;i;m;j ¼
P

l2T ðkÞ �m;j;k;l. This enforces the assignment
consistency at common nodes in the tree.

3.3.4 Color Consistency

To linearize the color difference term S in (1), we use the L1 norm
to compute the color difference of two body parts so that we can
use a standard linear programming auxiliary variable trick [17].
Let H be the set of symmetrical body part pairs. Term S can be
linearized as

S ¼
X

fn;mg2H

X3

k¼1

�
gþn;m;k þ g�n;m;k

�
;

where gþm;n;k and g�m;n;k are nonnegative auxiliary variables. We use
three color channels k ¼ 1::3. The nonnegative auxiliary variables
are constrained by the color difference at each channel:

gn;k � gm;k ¼ gþn;m;k � g�n;m;k; k ¼ 1::3; 8fn;mg 2 H:

Here, gn;k is the color of body part n at channel k. The color of a
body part can be computed using the node assignment indicator
variable �n;i:

gn;k ¼
X
i2T ðnÞ

ln;i;k � �n;i;

and ln;i;k is the average color of the candidate covering region i for
body part n at channel k. It is easy to verify that at least one
variable in the pair of gþn;m;k and g�n;m;k will become 0 when the
objective function is optimized; otherwise, we can zero one of them
and obtain a better solution by subtracting the two variables with
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Fig. 2. (a) Body part covering example in which part candidates ðn; iÞ, ðm; jÞ, ðk; pÞ,
and ðk; qÞ cover pixel ðx; yÞ in the foreground map. (b) Definitions of edge variables
and node variables.



the smaller one of them. Therefore, when the objective function is
optimized, gþn;m;k þ g�n;m;k ¼ jgn;k � gm;kj, and S is the L1 color
distance between symmetrical body parts. Note that the color
symmetry term is a regularization term in the objective function.
The constraint of color is therefore soft, which permits occasionally
large discrepancy of colors on symmetrical body parts.

3.3.5 Relaxation and Two-Stage Approximation

The consistent max-covering optimization is a mixed integer
program with binary variables � and �, and continuous variables r
and g. Directly solving the mixed integer program has high
complexity. We relax it into the following linear program:

max

( X
ðx;yÞ2I

rx;y � �
X

n2V ;i2T ðnÞ
cn;i � �n;i

� �
X

hn;mi2E;i2T ðnÞ;j2T ðmÞ
hn;i;m;j � �n;i;m;j

� �
X

fn;mg2H

X3

k¼1

�
gþn;m;k þ g�n;m;k

�)

s:t: �n;i ¼
X

j2T ðmÞ
�n;i;m;j; �m;j ¼

X
i2T ðnÞ

�n;i;m;j;

� � 0; 8hn;mi 2 EX
i2T ðnÞ

�n;i ¼ 1; �n;i � 0; i 2 T ðnÞ; 8n 2 V

gn;k � gm;k ¼ gþn;m;k � g�n;m;k;
gþn;m;k; g

�
n;m;k � 0; 8fn;mg 2 H

gn;k ¼
X
i2T ðnÞ

ln;i;k � �n;i; k ¼ 1::3; 8n 2 V

X
8ðn;iÞ covers ðx;yÞ

�n;i � rx;y;

0 � rx;y � fx;y; 8ðx; yÞ 2 I;

where � and � are relaxed into continuous variables in ½0; 1�. If we
do not include the covering constraint term and color symmetry
term, the linear program on the tree structure body plan is
equivalent to the integer program and it can be solved efficiently
using dynamic programming (DP). The nontree structure of
consistent max covering complicates the solution. Its relaxation
does not directly yield integer solutions for node variables �.
Rounding by selecting the largest � for each body part yields poor
results. Fortunately, using the interior method, its solution almost
always contains very few large �. We threshold � to zero out most
variables. The typical threshold is 0.001. Similarly to the
approximation trick in [15], we can further construct a small
mixed integer program by only including the target candidates
corresponding to the nonzero �. The small mixed integer program
can be directly solved using an exhaustive enumeration or a more
efficient branch and bound method. Since the first step eliminates a
large number of body part candidates, the second exhaustive
search step can be quickly solved.

The average complexity of a linear program is roughly linear to
the number of constraints and logarithm to the number of variables
[17]. This simplex method heuristic applies to our model for which
the primal-dual interior point method is almost always faster than
the simplex method for different problem sizes. The number of
edge variables of the proposed linear program is proportional to
the square of the number of target candidates n; the number of
foreground variables equals the number of foreground pixels m.
The number of constraints is in the same order as the number of
variables. The linear program thus has Oððn2 þmÞ logðn2 þmÞÞ
average complexity. We can further speed up the linear program
by heuristics. The neighboring body parts only accept quite limited
set of candidates: The pair of candidates too far away can be

pruned. Using such a trick, the number of edge variables and
related constraints can be greatly reduced. The number of
foreground variables and constraints can also be reduced by using
a coarser representation of the foreground map: Instead of
corresponding to each pixel, the foreground variable and con-
straint correspond to each region. Due to slow variation of the
foreground map, downsampling will not degrade the perfor-
mance. Typically, we extract 100 torso candidates, 200-500 limb
and head candidates, and use 2,500-5,000 foreground variables to
represent foreground map regions. In a 2.8 GHz Linux machine,
the linear program takes less than 20 seconds to converge. We need
a few parameters in our formulation to control the weight of
different energy terms. In this paper, we simply set the parameters
by trial and error and fix them in all of the experiments. A
systematic learning approach can be used to fine-tune these
parameters on ground truth data set using exhaustive search or
generic nondifferentiable local optimization methods.

3.4 Exclusion or Covering: A Comparison

In [15], we use exclusion constraints to penalize overlapping body
parts. This constraint prevents different body parts from occupy-
ing the same spatial location. To implement the exclusion
constraint, we first find all of the body part candidates that
conflict with ðn; iÞ and we denote the set as An;i and then we
enforce

�n;i þ
X

ðm;jÞ2An;i

�m;j � 1; i 2 T ðnÞ:

With such a constraint, if ðn; iÞ is assigned to part n, other body
parts cannot select any candidates in the set that conflicts with ðn; iÞ.

Consistent max covering and exclusion are two different ways
to “spread out” the body part assignment. They seem to achieve
similar effect, but in fact they behave quite differently: Consistent
max covering does not penalize truly overlapping body parts,
instead it encourages body parts to cover the object foreground;
body part exclusion penalizes all the overlapping patterns even
though the parts should really overlap. We compare the perfor-
mance of these two linear schemes in the experimental section.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the consistent max-covering method on
human pose estimation and compare it with different approaches.

Fig. 3 illustrates the proposed method’s resistance to cluttered
foreground. Fig. 4 shows another test in which the foreground map
is corrupted by a higher level of structure noise. The results
degrade mildly even though there is a substantial amount of
clutter in both the object foreground and background. In the
proposed method, max covering is a soft constraint; it therefore
allows rough foreground estimations. When the foreground map is
poor and every pixel’s foreground potential approaches 0.5, the
optimization is equivalent to pose detection with uniform penalty
on overlapping body parts.
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Fig. 3. Pose estimation with cluttered foreground. The gray-scale images on the
first and third columns are foreground maps; gray indicates potential 0 and white 1.
The pose estimation results are overlapped on the corresponding color images.



Sample results of pose estimation using the proposed method

are shown in Fig. 6. The test data include six test video sequences:

two ballet sequences, two lab sequences, and two videos from

YouTube. The ballet sequences include complex movements and

body part self-occlusions. In the YouTube sequences and the lab

sequences, actors wear baggy clothes and perform complex

movements. YouTube videos also have low image quality due to

heavy compression. There are 1,464 images in total. The proposed

method robustly detects body poses in the test sequences. In the

following, we compare the proposed method with different

competing approaches.

4.1 Comparison with Different Variations

We first compare the proposed method with some of its variations.

Fig. 5 illustrates the results of max covering and consistent max

covering. Max covering maximizes the covering potential while

ignoring other consistency constraints. As expected, max covering

may generate a body part covering that does not resemble a

human body plan. Consistent max covering is necessary to obtain

good results.

We proceed to test another variation of the linear method in

which we keep only the local part matching cost and the tree

structure spatial consistency constraint. Ignoring the covering

energy, this is in fact the formulation which can be solved by DP

[10]. The proposed relaxation method is exact and equivalent to DP

in this case. Without global constraints, we expect more errors. Fig. 7

shows how the proposed method improves the result over DP. The

comparison is based on both visual inspection and comparing with

the ground truth labeling. The qualitative comparison of average

detection errors is listed in Table 1. With ground truth data, we

further define the pose score of each detection as the ratio of the

overlapping area of limb detection with the ground truth region to

the overall limb foreground. The most easily detected torso is not

counted so the measurement is more sensitive. A perfect detection

has the pose score of 1. In real detections, pose score is from 0 to 1

and a higher pose score indicates superior performance. Fig. 9

shows the normalized histograms of per-frame pose scores. The

ideal pose detector should have a single peak of 1 at pose score 1 and

vanishes anywhere else. A good real detector has a pose score

histogram focused on the right side and has a steep rise on the left
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Fig. 5. Compare with pose estimation using max covering which ignores the

consistency constraints. From left to right: Input image, foreground map, pose

estimation using max covering, and the result of consistent max covering.

Fig. 6. Pose estimation using consistent max covering for the six test videos. Ballet has complex movements, self-occlusion, fast motion, and interleaving effects; lab
involves baggy clothes, cluttered background and foreground; actors wear baggy clothes in the taichi and fitness sequences from YouTube. We use simple color
segmentation to extract foreground maps for all the sequences except lab-II for which we use background subtraction. Row 1: Sample results for 301-frame
ballet-I and 314-frame ballet-II. Row 2: Sample results for 186-frame lab-I. Row 3: Sample results for 276-frame lab-II. Row 4: Sample results for 303-frame
taichi. Row 5: Sample results for 84-frame fitness.

Fig. 7. Compare with DP. The first row is the result of DP and the second row
shows how the proposed method improves the result.

TABLE 1
Average Number of Errors Per Frame in Pose Estimation

(B1-2, L1-2, T, F Indicate Ballet, Lab, Taichi, and Fitness Videos)

Fig. 4. The proposed method still works well when the foreground map is corrupted
by structured noise. The foreground corresponds to the “brighter” pixels in the
images. The result degrades mildly; in the 710 body part detections, we have
16 more part detection errors on the noisy foreground maps than those on the
clean foregrounds.



side. As shown in Fig. 9, the proposed method’s result is
substantially better than that of DP. The average pose score in
Table 2 confirms the observation. Large detection errors are
characterized by pose scores less than 0.7. As shown in Table 3,
the number of large errors of the proposed method are often
10 times smaller than those of DP.

We further compare the proposed method with a closely related
linear programming formulation. If the body part end point
distance is measured with L1 norm, we can use the auxiliary
variable trick to construct a simpler linear formulation that
includes only node variables. In this restrictive case, the proposed
method and the simple LP formulation are equivalent under
integer constraints. But the relaxation has a large difference. As
shown in Fig. 8, the proposed method yields better results for the
challenging cases. The comparison of the two methods using all six
test videos is summarized in Fig. 9 and Tables 1, 2, and 3. The
proposed method is consistently better than the simple LP over all
the test cases with about half of the per-frame errors.

4.2 Comparison with Other Pose Detection Methods

Our previous tests show that the proposed method is indeed better
than its related variations. The question is, does it generate better
results than locally constrained methods? We compare the
proposed method with the inference method using tree structure

[14] and a recent tree method using stronger part detectors [22].
We run the code with these papers on our data. For fair
comparison, we use foreground mask to partially eliminate the
background clutter before using the code for body part detection.
The two tree methods use stronger body part detectors than the
simple bar detectors in this paper. As shown in Fig. 10, tree
methods sometimes miss detecting body parts because they do not
incorporate the global body shape; the proposed method gives
better results. The pose score histograms are shown in Fig. 9, and
Tables 1, 2, and 3 show more statistics of these methods. The
proposed method gives better results over all the test cases.

We further compare the proposed method with a nontree

method [15] and a BP-based method. The BP method is

implemented using libDAI [25]. These methods use local con-
straints to penalize the overlapping body part detections to form

nontree model graphs. The results are shown in Figs. 9 and 11, and

Tables 1, 2, and 3. The proposed method still yields much better

results than the two competing nontree methods. As shown in
Fig. 6, a few more errors occur in the taichi and fitness sequences.

This is mostly due to the simple body part detector used in this

paper. Weak image edges may result in error local matching costs

associated with body part candidates. A stronger body part
detector will further improve the results.

4.3 Test on More Ground Truth Data

We test the proposed method on more ground truth data including

the walking sequence in [16], the CMU motion capturing data, and

the videos from the HumanEva data set [24].
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TABLE 2
Average Pose Scores

TABLE 3
Percentage of Detections with Pose Score < 0:7

Fig. 9. Per-frame pose score distributions. Good performance is characterized by
a large portion of a curve in the high score range.

Fig. 8. Compare with a simpler linear formulation (Simple LP) which uses only
node variables. The odd rows are the results of Simple LP and the even rows show
the results of the proposed method.

Fig. 10. Compare with the tree inference method one (Tree-I) [14] and two (Tree-II)
[22]. Rows 1 and 3 show the results of tree-I and tree-II. Rows 2 and 4 show the
results of the proposed method.



We compare with the method in [16] on the 50-frame walking

sequence. Our mean detection error is 9.8 pixels, compared to 10.3

reported in [16]. Our experiment setting is looser than that in [16]:

We do not assume the occlusion order and we do not use any

training data. Our body model is an average person model. We

simply manually set the scale. Our method is thus able to give

more reliable results than [16].
We further test the proposed method on synthetic data

generated from the CMU motion capturing data set. One thousand

poses are randomly selected from the data set and the front views

are rendered. We apply the proposed method, the two-tree

inference methods [14], [22], the nontree method [15], and the BP

method to the synthetic images to detect human poses. The

detections are compared with the ground truth. Fig. 12 shows the

comparison result of the proposed method with the tree methods,

the nontree method, and the BP method. The normalized

histograms of the pose scores of the five methods indicate that

the proposed method has the best performance. The average pose

score comparison confirms the observation.
We also use the HumanEva [24] data set in the comparison. The

three most cluttered video sequences from camera view one are
selected in the comparison. Background subtraction is used to
obtained the object foreground. Due to the very cluttered back-
ground, the object foreground estimation is quite noisy. We
roughly normalize the object scale and then optimize the pose
estimation. Fig. 13 compares the pose scores for the three test
videos. The proposed method has the best performance. The visual
inspection result conforms to the quantitative analysis.

5 CONCLUSION

We propose a novel consistent max-covering scheme for human

pose estimation. The proposed method seamlessly combines

different cues such as edges, color symmetry, body linkage plan,

and finds a consistent max covering of the object foreground map

using body part polygons. It introduces high-order correlations

among multiple body parts and greatly improves the performance

of pose estimation for complex movements. We devise a linear

formulation and an efficient relaxation method to solve consistent

max covering. Experiments on challenging images and videos

show that the proposed method is robust and efficient. We believe

that this method is useful for many applications including

automatic surveillance and human movement analysis.

ACKNOWLEDGMENTS

This work is supported by US National Science Foundation (NSF)

Grant 1018641.

REFERENCES

[1] X. Bai and W.Y. Liu, “Skeleton Pruning by Contour Partitioning with
Discrete Curve Evolution,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 3, pp. 449-462, Mar. 2007.

[2] R. Rosales and S. Sclaroff, “Inferring Body Pose without Tracking Body
Parts,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000.

[3] A. Agarwal and B. Triggs, “3D Human Pose from Silhouettes by Relevance
Vector Regression,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, 2004.

[4] K. Grauman, G. Shakhnarovich, and T. Darrell, “Inferring 3D Structure
with a Statistical Image-Based Shape Model,” Proc. IEEE Ninth Int’l Conf.
Computer Vision, 2003.

[5] A. Elgammal and C.S. Lee, “Inferring 3D Body Pose from Silhouettes Using
Activity Manifold Learning,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2004.

[6] J.M. Wang, D.J. Fleet, and A. Hertzmann, “Gaussian Process Dynamical
Models for Human Motion,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 30, no. 2, pp. 283-298, Feb. 2008.

[7] G. Mori and J. Malik, “Estimating Human Body Configurations Using
Shape Context Matching,” Proc. Seventh European Conf. Computer Vision,
2002.

[8] D.M. Gavrila, “A Bayesian, Exemplar-Based Approach to Hierarchical
Shape Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 29, no. 8, pp. 1408-1421, Aug. 2007.

[9] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast Pose Estimation with
Parameter Sensitive Hashing,” Proc. IEEE Ninth Int’l Conf. Computer Vision,
2003.

[10] P.F. Felzenszwalb and D.P. Huttenlocher, “Pictorial Structures for Object
Recognition,” Int’l J. Computer Vision, vol. 61, no. 1, 2005.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 9, SEPTEMBER 2011 1917

Fig. 12. Comparison on the synthetic data. One thousand poses are generated

using the CMU motion capturing data. We compare the pose score of the

proposed method with the tree inference method [14], [22], the nontree method

[15], and the BP method. Higher pose score indicates better performance.

Fig. 13. Comparison on the HumanEva data set [24]. The walking, boxing, and
jogging sequences from camera one are used in the experiment. Row 1: walking,
Row 2: boxing, Row 3: jogging. There are a total of 1,182 frames.

Fig. 11. Compare with the nontree method [15] (row 1) and BP (row 3). The odd

rows are the results using the competing methods and the even rows show results

of the proposed method.



[11] S. Ioffe and D.A. Forsyth, “Probabilistic Methods for Finding People,” Int’l
J. Computer Vision, vol. 43, no. 1, June 2001.

[12] M.W. Lee and I. Cohen, “Proposal Maps Driven MCMC for Estimating
Human Body Pose in Static Images,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2004.

[13] X. Ren, A. Berg, and J. Malik, “Recovering Human Body Configurations
Using Pairwise Constraints between Parts,” Proc. IEEE 10th Int’l Conf.
Computer Vision, 2005.

[14] D. Ramanan, “Learning to Parse Images of Articulated Objects,” Neural
Information Processing Systems, 2006.

[15] H. Jiang and D.R. Martin, “Global Pose Estimation Using Non-Tree
Models,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2008.

[16] L. Sigal and M.J. Black, “Measure Locally, Reasoning Globally: Occlusion-
Sensitive Articulated Pose Estimation,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2006.

[17] V. Chvátal, Linear Programming. W.H. Freeman and Company, 1983.
[18] H. Ning, W. Xu, Y. Gong, and T.S. Huang, “Discriminative Learning of

Visual Words for 3D Human Pose Estimation,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2008.

[19] T. Tian and S. Sclaroff, “Fast Globally Optimal 2D Human Detection with
Loopy Graph Models,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2010.

[20] V. Ferrari, M.M. Jimenez, and A. Zisserman, “Pose Search: Retrieving
People Using Their Pose,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2010.

[21] S. Johnson and M. Everingham, “Combining Discriminative Appearance
and Segmentation Cues for Articulated Human Pose Estimation,” Proc.
IEEE Int’l Workshop Machine Learning for Vision-Based Motion Analysis, 2009.

[22] M. Andriluka, S. Roth, and B. Schiele, “Pictorial Structures Revisited:
People Detection and Articulated Pose Estimation,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2009.

[23] H. Jiang, “Human Pose Estimation Using Consistent Max-Covering,” Proc.
IEEE 12th Int’l Conf. Computer Vision, 2009.

[24] HumanEva Data Set, http://vision.cs.brown.edu/humaneva, 2011.
[25] libDAI, http://people.kyb.tuebingen.mpg.de/jorism/libDAI, 2011.
[26] B. Sapp, C. Jordan, and B. Taskar, “Adaptive Pose Priors for Pictorial

Structures,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2010.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1918 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 9, SEPTEMBER 2011


