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Abstract

This paper presents a new automatic approach to
building a videorama with shallow depth of field. We
stitch the static background of video frames and render
the dynamic foreground onto the enlarged background
after foreground/background segmentation. To this end,
we extract the depth information from a two-view video
stream. We show that the depth cues combined with
color cues improve segmentation. Finally, we use the
depth cues to synthesize the shallow depth of field ef-
fects in the final videorama. Our approach stabilizes
the camera motion as if the video was captured from a
static camera and improves the visual quality with the
increased field of view and shallow depth of field effects.

1. Introduction
Although video cameras are widely available, creat-

ing a professional-looking video has not been common
yet. It is difficult to capture good footage that is well
composed, beautifully lit, and endearing. Casual videos
usually follow the main subjects with unplanned shaky
camera motions. As a result, the main subject is not in
the middle of the frame, but a cluttered background is.

High-frequency camera shakes are often removed by
video stabilization. We want to extend video stabiliza-
tion to low-frequency camera motions and generate a
videorama. Videorama presents all the video frames as
if the video was captured from a fixed camera while in-
cluding all the fields of view. As a result, videorama
has an elongated field of view. To this end, we stitch the
static background and render the dynamic foreground
onto the enlarged background.

While automatic image stitching has been studied
extensively [15, 4], automatic video stitching is not
available. Complex motions of the camera and fore-
ground objects are the main challenge for video stitch-
ing. Pritch et al. [12] present a panoramic stroboscopic
synopsis , but they assume a simple motion of the cam-
era and object. Gleicher and Liu [6] improve the camera
motion by transforming each frame, but they inpaint the
background instead of stitching the background. Liu et
al. [10] stitch video frames, but their goal is to build a
panorama instead of a videorama.

In addition to stitching the video frames, we provide

shallow depth of field effects to blur cluttered back-
ground. To generate a visually pleasing results, the
depth of field effects should be consistent with the ac-
tual depth. To this end, we estimate depth using a two-
view video stream. The additional dimensional infor-
mation in the Light field cameras [13, 16, 1, 11] is used
in video stabilization and depth of field manipulation.
In this paper, we use the depth to separate foreground
and background and to render the final result with shal-
low depth of field. Zhang et al. [18] implement the
depth of field effects in videos, but they do not stitch
the background since they require a large camera mo-
tion.

In this paper, we propose an automatic approach
to generate a videorama with shallow depth of field.
We segment foreground/background, stitch the static
background, and render the dynamic foreground on the
stitched background. We use the depth extracted from
a two-view video stream for the segmentation and for
the final shallow depth of field rendering. It is natural
to use the depth to separate the foreground, since the
foreground is by definition the part of the scene closer
to the camera than the background. We label the pixels
that are close to the camera and with different motion
from the background as foreground.

Moving object extraction from a video has been a
great interest of the Computer Vision community. Many
of them [14, 17] assume a static camera. Zhang et al.
[19] use a structure from motion (SfM) method to ex-
tract a moving object, but they assume camera transla-
tion. Since we use two-view video streams, we do not
require camera translation. Liu and Gleicher [9] assume
the background colors are different from the foreground
ones. By combining the color cues with the depth, our
method works for the cases where the background and
foreground colors are similar. Kolmogorov et al. [7]
combine stereo, color, and contrast for segmentation.
They assume rectified inputs and depth discontinuities,
while we deal with unrectified inputs and do not require
depth discontinuities.

2. Our Approach
We consider the moving foreground as regions that

are close to the camera and move in some frames. We
assume the camera motion is mostly panning and the
backgrounds can be stitched with homography warping.
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We extract depth from a two-view video stream and
build rough backgrounds using a median filter. We per-
form segmentation in two steps. In our initial segmen-
tation, we use the depth and the color difference be-
tween the current frame and the background to sepa-
rate the foreground and background. Our final segmen-
tation uses the color and depth cues learned from the
initial segmentation results to extract the moving fore-
ground. We stitch the background to generate an elon-
gated background and blend the dynamic foreground
with it. The depth information is used to synthesize
shallow depth of field effects in the final results.

2.1. Depth estimation
We estimate the depth Dt(r) of each pixel r by ap-

plying SfM to each pair of frames Lt and Rt at time
t. SfM outputs a sparse depth map. We propagate the
sparse depth map to the whole image using optimiza-
tion [8, 2]. The second columns of Fig. 4 and 5 show
our depth maps. Darker pixels are closer.

2.2. Initial moving object extraction
We identify moving objects by examining the depth

and the color difference between the current frame and
background. Previous work assumes a static camera or
a known background [12, 14]. However, we do not have
a known background, and a simple median filter does
not work on videos from moving cameras. To remove
the camera motion, we apply homography warping be-
fore taking a temporal median. For each frame t, we
take a median of the warped frames which overlap with
the frame t by more than 90%.

After constructing the background Bt, we perform
moving object extraction using graph cuts [3]. Let Rt

be the set of pixels in the current frame of the right
camera and Nt be the set of 8-connected adjacent pixel
pairs. A labeling f assigns 1(fg) or 0(bg) to each pixel
r ∈ Rt. To obtain a binary image labeling f , we mini-
mize a Gibbs energy E(f):

E(f) =
∑
r∈Rt

Edata(fr) +
∑

(r,s)∈Nt

Esmooth(fr, fs)

(1)
Our smoothness energy term is based on the normal-

ized correlation between the colors of two pixels [8]:

Esmooth(fr, fs) ∝ 1+
1

σ2
r

(I(r)−µr)(I(s)−µr) (2)

where µr and σr are the mean and variance of the colors
in the neighboring pixels around r.

The data term evaluates the likelihood of each pixel
belonging to the foreground or background. We assume
that the color differences of the moving foreground ob-
jects from the background Vt(r) =∥ It(r) − Bt(r) ∥
are large and the moving foreground objects are close
to the camera, i.e., Dt(r) is close to 0. The mean and
variance of D can be modeled for the foreground since

the depth of foreground pixels are similar to each other,
and the mean and variance for V can be modeled for
the background since V is close to 0 in the background
pixels. We compute the mean µd and variance σd of
D for the pixels whose D values are less than the 10th
percentile, and the mean µv and variance σv of V are
for the pixels whose V values are less than the 90th per-
centile. Basically, we are assuming that approximately
90% of pixels are the background pixels. Our data term
Edata(fr) is formulated as follows:

Edata(bg) = − log(e
− ∥V −µv∥2

2σ2
v · (1− e

− ∥D−µd∥2

2σ2
d ))

(3a)

Edata(fg) = − log((1− e
− ∥V −µv∥2

2σ2
v ) · e

− ∥D−µd∥2

2σ2
d )

(3b)
The above model extracts moving objects correctly

when the median filtering results are accurate. How-
ever, the median filtering assumes that the background
appears more than the foreground, and often the fore-
ground object does not move and occupies the pixel
more than the background. In Fig. 1, the background in
the first two columns are built well and the foreground
objects are correctly extracted, while the background in
the last two columns are not correct. The foreground
in the third column is correctly detected thanks to our
depth cues, while a part of the foreground object in the
last column is missing. To overcome this false detec-
tion, we learn color cues from the extracted foreground
and background and perform our final segmentation.

(a) input frames

(b) background construction using a median filtering

(c) initial foreground extraction

Figure 1. If the foreground objects stay
still, a median filter cannot generate a cor-
rect background. Our depth cues help re-
covering the foreground even with an in-
correct background.

2.3. Final segmentation using color and depth cues
We train a Gaussian Mixture Model (GMM) on

both foreground and background colors, and their depth
maps as well. We train the foreground from the top 10%
frames whose initial foreground sizes are small, and
train the background from the top 10% frames whose
initial background sizes are small. This prevents from
learning from the false detection. The likelihood of
a pixel belonging to the foreground or background is
modeled as follows:
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p(Ir|l) =
Kl∑
k=1

pl,kG((Ir, Dr)|µl,k,Σl,k) (4)

where l ∈ {fg, bg} and G(·) is a Gaussian compo-
nent. (pl,k, µl,k) represents the prior and the mean color
and depth. Σl,k is the covariance matrix of the kth com-

ponent of GMM, and forms as
(

Σl,k,c 0
0 σl,k,d

)
, where c

stands for color and d stands for depth. We use 12 for
Kbg and 3 for Kfg . We solve a new labeling problem
with the following data term using graph cuts.

Edata(l) = − log p((Ir, Dr)|l) (5)

(a) foreground results without depth cues

(b) our foreground results with depth cues

Figure 2. When the foreground and back-
ground colors are similar, color cues are
not sufficient to separate the foreground
from the background. Our segmentation
employs the depth cues and can generate
correct segmentation results.

Since we use the depth cues in addition to the color
cues, we can separate the foreground and background
even when they have very similar color distributions.
Figure 2 shows the comparison. The third columns of
figure 4 and 5 show more of our segmentation results.

2.4. Videorama with shallow depth of field synthesis
To generate a videorama, we stitch only the back-

ground of each frame by taking a median after ho-
mography warping. We blend the foreground with
the stitched background using a multi-band blending
method [5] and apply a spatially varying blur accord-
ing to our depth map.

3. Results
Figure 3 shows the background and depth maps

stitched. They correctly capture the static background
with an elongated field of view.

After our foreground and background composite, the
videorama looks as if the video was captured from a
fixed camera with a large field of view. In addition, our
videorama blurs the cluttered background while keep-
ing the foreground sharp. This simulates the shallow
depth of field effects. Figure 4 and 5 present our vide-
orama results in addition to the original frames, depth
maps, and our segmentation results.

4. Conclusions
We have presented an automatic approach to generat-

ing a videorama with shallow depth of field. We extract
the depth using a two-view video streams and segment
foreground/background using the depth and color cues.
We show that using the depth cues is intuitive and im-
proves segmentation. Our approach stabilizes the cam-
era motion by fixing a virtual camera location and im-
proves the visual quality by increasing the field of view
and by synthesizing shallow depth of field effects.
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Figure 3. Backgrounds and depth maps stitched. In our depth maps, darker pixels are closer.

(a) input frames (b) depth maps (c) our segmentation results (d) our final videorama frames 

with shallow depth of field

Figure 4. The input frames (a) present unplanned camera motion and sharp and cluttered back-
ground, while our videorama result (d) looks as if the video was captured from a fixed camera
with a large field of view and shallow depth of field.

(a) input frames (b) depth maps (c) our segmentation results (d) our final videorama frames 

with shallow depth of field

Figure 5. Our videorama result (d) has a fixed large field of view and shallow depth of field, while
the input frames (a) have unplanned camera motion and sharp and cluttered background.
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