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ABSTRACT

Human movement summarization and depiction from videos
is to automatically turn an input video into high level action
illustrations, in which the movements of the body parts are
visualized using arrows and motion particles. Motion depic-
tion compactly illustrates how specific movements are per-
formed. Previous action summarization methods reply on 3D
motion capture or manually labeled data, without which de-
picting actions is a challenging task. In this paper, we propose
a novel scheme to automatically summarize and depict hu-
man movements from 2D videos without 3D motion capture
or manually labeled data. The proposed method first segments
videos into sub-actions with an effective streamline matching
scheme. Then, to estimate human movement, we propose a
novel trajectory following method to track points by using
both body part detection and optical flow. With the estimated
movement, we depict the human articulated motion with ar-
rows and motion particles. Our experiments on a variety of
videos show that the proposed method is effective in summa-
rizing complex human movements and generating compact
depictions.

1 Introduction
Summarizing human movement in videos using a small set
of static illustrations has many important applications. It is
a valuable tool for the educational purpose to demonstrate
how a specific movement can be performed. It also helps
video browsing and provides compact representations for ac-
tion recognition and movement analysis. Without 3D motion
capture or manual labeling, high level action summarization
that depicts the human body part movement is a difficult task.
In this paper, we propose novel methods to automatically es-
timate human articulated motion and generate motion depic-
tions from 2D videos without manually labeled data. A mo-
tion depiction example is shown in Fig.1.

In human movement summarization and depiction, we
have to solve three basic problems: action segmentation
(video segmentation into meaningful sub-actions), human
movement estimation, and movement depiction. Action seg-
mentation is to partition a complex action in a video into
frame groups and in each group a simple sub-action occurs.
We are most interested in segmenting input videos into sub-
actions that reflect different movements of human body parts.
Most previous research on action segmentation uses 3D mo-
tion capture data [1, 2, 5]. Movement segmentation with

Fig. 1. Our method converts a video sequence to movement
depictions, which illustrate body part movements using ar-
rows and subtle local movements using motion particles.

videos as a direct input is more challenging. Clustering based
methods [3] for generic video segmentation can be applied to
action segmentation. The downside of a clustering approach
is that the number of clusters is hard to determine. Another
widely used scheme is to directly detect the action boundaries.
Rui et al. [4] propose to use PCA coefficients of dense optical
flow to quantify the movement changes; the temporal curves
of the features derived from the PCA coefficients are used to
detect sub-action boundaries. In this paper, we follow the ac-
tion boundary detection scheme. Our method uses a cluster
of streamlines to capture the salient movement characteristics
in action boundary detection.

In the second step, we extract the high level movement of
a human subject. A high level movement representation has
to reflect the body part movement and local subtle motion. To
this end, we detect body parts and compute the motion tra-
jectories of feature points. Finding feature point trajectories
on human subjects has been studied in a multiple camera set-
ting [9]. For single view videos, finding long trajectories is
a hard problem. Simply propagating point location estimate
from frame to frame using optical flow would cause the tra-
jectory to drift in a long time span. Occlusions also make
direct point tracking a difficult problem. In this paper, we
merge body part detection, which can be obtained using meth-
ods in [6, 7, 8], and optical flow to achieve reliable results.
Compared with previous human tracking methods [10], our
scheme can be used to track feature points on human subjects
in unconstrained movements. We propose an efficient mul-
tiple path optimization method to link body part detections
in different video frames. The optimization explicitly models
high order dynamics and can be efficiently solved using a lin-
ear method. The point cloud trajectory estimation is further
formulated as an optimization problem in which we jointly
find all the coupled trajectories constrained by the body part



detection, optical flow and object foreground estimation.
In step three, motion depiction, we express the object

movement in each segmented sub-action using a static illus-
tration. Human movement depiction has been practiced in
different artworks for centuries. Graphics elements, such as
streamlines, motion blur, and overlapping semi-transparent
ghost images have been used to illustrate actions. For com-
putational motion depiction, the challenge is to translate hu-
man movement estimation into appropriate graphics repre-
sentations. Our work is inspired by [2] which uses arrows,
noise waves, and stroboscopic motion to depict stick figure
movement. [2] uses 3D motion capture data. In contrast, our
method does not reply on 3D motion capture or manual label-
ing; it automatically generates the illustration from a direct
2D video input. We use arrows to illustrate the body part
movement, the motion particles to depict the subtle local mo-
tion, and ghost images to provide reference transitional and
ending poses. In the following sections, we show how a con-
vincing motion depiction can be achieved using the proposed
method.

To our best knowledge, the proposed method is the first
attempt that automatically converts a 2D video sequence to
high level human movements depictions without 3D motion
capture or manually labeled data. It is potentially capable
of providing compact representations for action recognition
and movement analysis. It can be used in many applications
especially for education purpose to teach students, patients
or people with disabilities how specific movements can be
achieved.

2 Motion Summary and Depiction
Our method is composed of three steps: 1) Action segmenta-
tion: we segment complex actions into simple ones which can
be depicted using directional arrows; 2) Human movement
estimation: we detect human body parts and associate them
through time. Then, we obtain rough human movement which
will be refined for movement depiction. Finally, we augment
the movement estimation into body point domain and clean
up the error body part movement estimation; 3) Movement
depiction: based on the cleaned up point motion estimation,
we generate directional arrows to depict the human body part
movements. The arrows are overlapped on the images to gen-
erate the final rendering results.

2.1 Action Segmentation
Action segmentation is to partition a complex action into sim-
ple sub-actions to facilitate movement depiction. We first di-
rectly detect the action boundaries and then use motion tra-
jectories to quantify human movements. We randomly select
seed points in each video frame and follow the motion field in
a fixed time interval. The trajectories are constructed by con-
necting the points from one frame to the next using the motion
vectors in a fixed time interval. In this paper, motion trajec-
tories are computed in 15 frames. In such a simple scheme,

there is no guarantee that the motion trajectories will not in-
tersect. However, since we are only interested in the overall
motion, the rough representation is sufficient.

After obtaining the motion trajectories starting from each
frame and stretching a fixed time interval, we shift the trajec-
tories so that they all start from point (0, 0, 0), where the three
coordinates are x, y and time. These clusters of motion tra-
jectories at each frame reflect how the object moves in a small
time interval.

To reduce the scale influence, the trajectories are further
projected to the xy plane and the 2D coordinates of points
on the curve are collapsed to form a normalized vector with
unit length. The difference of movements is defined as the
distance of these feature vectors. Let F = {vn, n = 1..N} be
the feature vectors for action one and G = {um,m = 1..M}
be the vectors for action two. The distance d between F and
G is defined as

d(F,G) =
1

N

∑

n

min
m

acos(vT
num)+

1

M

∑

m

min
n

acos(uT
mvn)

To detect movement boundaries, we require that the action
features be stable when body parts keep their motion direction
and the changes of the measurement should be proportional
to the motion direction changes. The feature defined above
fulfills the requirement.

In movement segmentation, we compute the distances of
streamlines between successive time instants and form the re-
sults into a 1D curve. Local maxima on the curve indicate
potential action changes. To avoid the detection of spurious
local peaks, the distance curve is low pass filtered. With the
robust streamline feature, the efficient approach achieves suf-
ficient segmentation results for further action depiction.

2.2 Human Movement Estimation
Extracting human movement is a prerequisite for high level
movement depiction. Apart from extracting feature point
movements on a human subject, we would like to determine
which body part each point belongs to. We devise a robust
method to extract articulated motion by combining the global
body part motion and local optical flow.

2.2.1 The Movement of Body Parts

We detect human body parts in each video frame and track
them through time. We use [8] for human body part detection.
We detect 10 body parts including head, torso, 4 half arms and
4 half legs as shown in Fig.2 Note that the detector does not
distinguish the left and right arms and legs and there are many
detection errors. We use the body part detections as a basis for
body part tracking, i.e., we associate the corresponding body
parts in successive video frames.

Based on the body part detection results, each limb that
corresponds to an upper or lower body part has two possible
locations in a video frame. We need to assign the two part
detections to limb one and limb two in each video frame and



Fig. 2. Body part detection sample results.
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Fig. 3. Trellises for a pair of limbs. The path in each trel-
lis corresponds to body part assignments through time; paths
should not conflict.

we have to make sure that each body part moves smoothly in
time and space. Unfortunately, naive exhaustive enumeration
method has an exponential complexity; for n frames there
will be 2n possible assignments. Such a method cannot be
used for body part association in hundreds and thousands of
frames. We propose an efficient linear method to solve this
problem. In this paper, body part association is formulated as
a multiple shortest path following problem. The formulation
is linear and can be solved efficiently. As follows, we will also
illustrate how the second order smoothness constraint can be
modeled by properly constructing the transition graph.

To optimize the body part association, we construct two
graphs for each pair of limbs. Fig.3 shows two trellises cor-
responding to a pair of limbs. Each node of the trellises in-
dicates a possible body part assignment. Except for the body
part candidate nodes, source nodes and sink nodes are also
included. At each layer, we have 4 possible body part assign-
ments and each corresponds to a limb selecting one candidate
in the current frame and one in the next frame. Note that each
node indicates the assignments of body parts candidate as-
signment at two instants. Such a setting is necessary since we
would like to introduce not only the first order, the position
smoothness, but also the second order, the speed smoothness
constraint.

We name the type of a node as aa, ab, ba or bb. For in-
stance, an ab node indicates a limb selecting candidate one
in the current frame and candidate two in the next frame;
other types of nodes are similarly defined. We link the source
nodes, candidate nodes and sink nodes into trellises. Fig.3
shows two trellises corresponding to a pair of arms or legs.
Note that the edges between the nodes need follow the pat-
tern of xy nodes connecting to yz nodes to enforce the con-
sistency of body part assignments. Therefore not every node-

node connection is valid. With the constructed graphs, body
part association becomes the problem of finding an optimal
path in each of the trellis.

As shown in Fig.3, the body part assignments to each limb
correspond to a path that starts from the source node and ends
in the sink node in each trellis. Each feasible path corresponds
to a valid body part association and vice versa. Every path has
different cost. The goal is to choose the minimum cost paths
on all the trellises. What makes the problem complicated is
that the paths are not independent: at each layer, there is at
most one node that can be selected in a node conflict group.
In Fig.3, the two green ovals in layer three form a conflict
group; the other group in the same layer is indicated by two
blue rectangles. Within each conflict group, there is at most
one path passing. Each conflicting group corresponds to a
spatial location that only one limb can be assigned to.

We formulate the problem in details. We introduce a node
variable ηn,m,k. It is 1 if the node vn,m,k, representing limb
n’s choice part candidate k in frame m, is on a path, and oth-
erwise ηn,m,k is 0. We also define the edge variable ξn,m,p,q ,
which is 1 if edge (vn,m,p, vn,m+1,q) is on a path and 0 oth-
erwise. We would like to minimize the cost of paths

∑

(vn,m,p,vn,m+1,q)∈E

cn,m,p,q · ξn,m,p,q

where E is the edge set of the trellises; cn,m,p,q is the cost
on the edge (vn,m,p, vn,m+1,q): for non-source and non-sink
edges. We define the cost c on each edge as

cn,m,p,q = ||ua
n,m,p − ua

n,m+1,q||+ (1)

||2ub
n,m,p − ub

n,m+1,q − ua
n,m,p||

and c is 0 for source and sink edges. Recall that each node
is related to two body part candidates and has a type xy. In
Eq.1, ua

n,m,p is the end point vector corresponding to the first
body part candidate for node vn,m,p; and ub

n,m,p is the second
vector. c is therefore composed of both first order and second
order smoothness terms, which enforces position and speed
continuity.

ξ follows the flow continuity condition for each trellis:
∑

k

ξn,m−1,k,p =
∑

q

ξn,m,p,q .

And the flow from each source node should be 1. This condi-
tion makes sure the solution is a path on a trellis. To constrain
the paths so that they do not conflict, we introduce a node
variable η that is related to edge variable ξ by

ηn,m,p =
∑

q

ξn,m,p,q .

To enforce that paths do not conflict, we introduce constraints:
∑

vn,m,p∈Qm,i

ηn,m,p ≤ 1, i = 1, 2



where Qm,i is the ith conflict node set in frame m. Each
conflict set corresponds to a possible body part location in
each video frame. This constraint prevents two body parts
from being assigned to the same place in one video frame.

Combining everything together, we obtain the following
integer linear program:

min{
∑

(vn,m,p,vn,m+1,q)∈E

cn,m,p,q · ξn,m,p,q}

s.t.
∑

k

ξn,m−1,k,p =
∑

q

ξn,m,p,q,
∑

l

ξs,ms,n,l = 1

ηn,m,p =
∑

q

ξn,m,p,q, n = 1, 2

∑

vn,m,p∈Qm,i

ηn,m,p ≤ 1, i = 1, 2

where s is the source node and ms is a single dummy can-
didate of the source node; V is the node set of the trellises.
This integer linear program can be efficiently solved using a
relaxation method followed by a rounding procedure to force
solutions to be integers. In fact, the relaxed linear program
always yields integer solution and therefore achieves global
optimum directly. Using the simplex method, we can com-
pute the body part association in thousands of frames in few
seconds.

2.2.2 Finding Point Trajectories

The body part association finds the rough locations of body
parts in each video frame. However, body part foreshortening
and local deformations have not been addressed. Body parts
also may have large estimation errors due to the errors in the
initial detections. In the following, we study how to correct
errors and extract more detailed point trajectories using both
body part detection and short term optical flow estimation.

We randomly select points on the object in the first video
frame. Each point traverses the spatial and temporal volume
and plots a trajectory. We require that the trajectories be con-
trolled by both body part detections and optical flow: each
trajectory fits the local motion estimation in the tangent direc-
tion; the point following a trajectory moves smoothly in space
and with a smoothly changing speed; it complies with body
part detection and stays inside the object foreground. The
body part tracking result presents a long term movement of
body points; however there are often errors. The optical flow
presents short term movement of body parts that are usually
accurate in a short time span. By merging these two estima-
tions, we can achieve more robust results. Moreover, there is
a global constraint that the points on trajectories also act on
each other so that their topologies should be consistent at each
time instant.

Before we optimize trajectories, we estimate initial body
point trajectories to correct gross body part detection errors.
We use a dynamic programming approach. At each instant,

t1 t2 t4t3 t5

Fig. 4. Error correction trellis. The white nodes indicate point
locations determined by part detections. The blue nodes rep-
resent predicted candidates from the previous part detections
using optical flow. The red nodes represent the predictions
from the previous predictions. In this example, two errors at
time 3 and 4 are skipped by the “blue” path in the graph.

apart from the point locations determined by the body part de-
tection, we include the point candidates predicted from point
locations in previous frames. The basic idea is if there is a
wrong large jump of point from one frame to the next, the
prediction of the current point using optical flow should be
used as the location estimate in the next frame. As illustrated
in Fig.4, we use nodes of a graph to indicate point locations
and the edges to indicate possible transitions. Apart from the
point locations estimated by body part detection, the candi-
date locations also include the predicted locations using op-
tical flow. The graph therefore provides alternative routes to
bypass the wrong point estimations. The weight on each edge
equals the distance of the points associated with the incidence
nodes. The optimal point locations through time correspond
to the shortest path from the first layer to the last layer of the
graph. It can be solved using dynamic programming. By in-
troducing more prediction steps, this method can be used to
correct multiple errors.

After estimating the initial locations for all the points, we
optimize all the point locations over all the image frames by
minimizing the following energy:

N−1∑

n=2

{||xn,k + f(xn,k)− xn+1,k||2 + λ1||xn−1,k + xn+1,k−

2xn,k||2 + λ2

∑

m∈N (k)

||xn,k − xn,m − xn+1,k + xn+1,m||2+

λ3||xn,k − x0
n,k||2 + λ4g(xn,k)}

where N is the number of frames; ||.|| is the L2 norm; xn,k

is the intersection point of trajectory k with video frame n;
f(xn,k) is the motion vector at point k in frame n; x0

n,k is
the initial estimate of the trajectory k, obtained by dynamic
programming; N (k) is the set of points that are the neigh-
bors of point k. A point is defined as a neighbor of point k
if the Delaunay triangulation of the point set in the first video
frame has an edge connecting the point to point k. g is a func-
tion that penalizes trajectories deviating from the object fore-
ground. In this paper, g is the Gaussian filtered distance trans-
form of the object foreground. g is an optional term; it is set to
zero when the foreground map is unavailable. λ1, λ2, λ3, λ4



are constant coefficients.
We use a gradient descent method to solve the optimiza-

tion. xn,k is updated with the following rule:

xt+1
n,k = xt

n,k − δ((xt
n,k + f(xt

n,k)− xt
n+1,k)+

λ1(6x
t
n,k − 4xt

n−1,k − 4xt
n+1,k + xt

n−2,k + xt
n+2,k)+

λ2

∑

m∈N (k)

(2xt
n,k − 2xt

n,m − xt
n+1,k + xt

n+1,m−

xt
n−1,k + xt

n−1,m) + λ3(x
t
n,k − x0

n,k) + λ4∇g(xt
n,k))

where δ is a small constant. We use about 1000 iterations to
obtain the trajectory clusters for hundreds of frames.

2.3 Movement Depiction
With the extracted articulated motion, we are ready for move-
ment depiction. We construct a single image for each sub-
action and use graphics components such as arrows and mo-
tion particles to illustrate the body part movements.

We use arrows to illustrate the movements of torso, arms
and legs. From the cluster of trajectories of a body part, we
compute the mean trajectory and use it as the center line of
the arrow. However, the mean trajectory may still have errors.
To solve this problem, we fit each trajectory in a sub-action
to a second-order polynomial. These low order polynomials
are sufficient to quantify the shapes of the trajectories in sub-
actions and to further remove the gross motion errors. The
width of an arrow is pre-defined while the brightness at each
point on the arrow is proportional to the speed of the corre-
sponding point on the body part. The color on the arrows is
important to illustrate the coordination of different body parts.
To reduce clutter, only arrows with enough length are kept.
Apart from the arrows, we scatter particles on the trajectories
of limbs to depict the detailed movements. Semi-transparent
ending frame and intermediate frame are also overlapped on
the depiction to show pose transition.

3 Experimental Results
We test the proposed motion depiction method on two bal-
let sequences and two recorded videos. These videos contain
complex movements and some have strong clutter. It is a great
challenge to summarize and depict the human movements in
these videos.

Fig.5 (row 1-3) shows our results on the ballet-I sequence.
The motion segmentation curve and the action boundary de-
tection results are shown in the second row. The proposed
method extracts the long trajectories of feature points on each
body part as shown in the second row of Fig.5. The mo-
tion depiction results are shown in row 2-3. The illustrations
clearly show the movements of the subject. The spin actions
are also well illustrated. The brightness of the arrows repre-
sents the speed of the corresponding body part: the brighter
the color, the faster it is at a specific instant. The blue motion
particles illustrate the subtle local motion.

The results of motion depictions for another longer ballet
sequence are shown in Fig.5 (row 5-8). This sequence con-
tains complex body part movement and self-occlusion. The
proposed method illustrates these movements using a com-
pact set of static images. Fig.5 (row 10) shows another result
for the girl fitness sequence which contains fast motion and
the video is shot with a shaky hand held camera. The pro-
posed video segmentation, motion extraction and depiction
method still work robustly. The proposed method can also
deal with cluttered videos as demonstrated in Fig.5 (row 12).

4 Conclusion
In this paper, we propose an automatic method to generate
human movement depictions using 2D videos as direct in-
put without 3D motion capture and manually labeled data.
The proposed method segments human movements into sub-
actions by streamline matching. We propose a novel trajec-
tory following method to track points on human body based
on both body part detection and optical flow. An efficient lin-
ear method is used to optimize the part association; a dynamic
programming approach is proposed for error correction; and
a gradient descent method is used to optimize all the coupled
trajectories simultaneously. Based on the extracted articulated
motion, we depict the high level body part movement using
color coded arrows and detailed movement using motion par-
ticles. Our experiments on a variety of videos show that the
proposed action depiction method is efficient, effective and
robust against complex movement, fast action, camera mo-
tion and cluttered background.
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Fig. 5. Motion depiction results on the ballet-I (row 1-3), ballet-2 (row 4-8), girl (row 9-10) and man (row 11-12) sequences.
The video segmentation curve and the body point trajectories for ballet-I are shown in the 2nd row. With the proposed method,
the 329-frame ballet-I, 583-frame ballet-II, 51-frame girl and 105-frame man sequences have been compactly depicted as small
number of images.


