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ABSTRACT

In this paper, we present a new method for tracking objects
with shadows. Traditional motion-based tracking schemes cannot
usually distinguish the shadow from the object itself, and this re-
sults in a falsely captured object shape, posing a severe difficulty
for a pattern recognition task. In this paper we present a color pro-
cessing scheme to project the image into an illumination invariant
space such that the shadow’s effect is greatly attenuated. The op-
tical flow in this projected image together with the original image
is used as a reference for object tracking so that we can extract the
real object shape in the tracking process. We present a modified
snake model for general video object tracking. Two new external
forces are introduced into the snake equation based on the predic-
tive contour such that (1) the active contour is attracted to a shape
similar to the one in the previous video frame, and (2) chordal
string constraints across the shape are applied so that the snake
is correctly maintained when only partial features are obtained in
some frames. The proposed method can deal with the problem
of an object’s ceasing movement temporarily, and can also avoid
the problem of the snake tracking into the object interior. Global
affine motion compensation makes the method can be applicable
in a general video environment. Experimental results show that the
proposed method can track the real object even if there is strong
shadow influence.

1. INTRODUCTION
Many computer vision tasks are made more difficult by the pres-
ence of shadows, confounding the recognition of objects and pre-
senting a major challenge to almost every algorithm that depends
on visual information. For example, the disambiguation of edges
due to shadows and those due to material changes has a long his-
tory in computer vision research [1]. In fact, consideration of shad-
ows as a cue for image understanding goes back to the beginnings
of machine vision research [2]. Graphics and digital photography
also must deal with shadow information in such tasks as color cor-
rection [3] and dynamic range compression [4].

Particularly in object tracking tasks we can expect shadows
to present a confounding factor, since we need to distinguish the
moving object from the shadows moving with it. Usual approaches
involve classificationof shadow pixels and material pixels, with
perhaps some further classification of self-shadowing from cast
shadows. Here we take an opposite point of view: instead of at-
tempting to deal with shadows directly, we circumvent the issue as
much as possible by trying to simply eliminate, or at least greatly
attenuate shadows, thus obviating the problem.

Some approaches do indeed try to eliminate shadows by de-
tecting and correcting them. In the context of surveilling roads for
the presence of pedestrians [5], under sunlight, the ‘core lines’ of
a walking human are extracted, along with those of the shadows,
based on the motion detection map. The internal and external pa-
rameters of the video camera are fixed in that method. Again in

the context of surveillance, in [6] a scheme based on image sub-
traction is presented. The image captured by the first camera is
first projected onto the road plane and then further projected to the
image plane of the second camera. The road maps of two images
will map perfectly while parts such as walking humans will not
map well. Using the second image to subtract the projection of
the first image will eliminate everything on the road plane includ-
ing the moving shadows. In [7], pixels are classified on the basis
of a statistical method. The features used include the illuminance
and normalized chrominance vector. Color change under changing
illumination is described by a von Kries rule — each color chan-
nel is approximately multiplied by a single overall multiplicative
factor [8]. Pixels are classified into background, foreground, and
shadow, based on maximum a posteriori classification, and spatial
information is also applied to improve the dense region classifica-
tion result. In [9], the shadow detection problem is studied based
on a model similar to the Phong model. Heuristic methods are
presented to classify the shadow and foreground object.

In [10], an attempt is indeed made to apply a colorinvari-
ant approach to shadow classification, in the context of still image
segmentation. The idea is to develop simple illumination invariant
features so as to obtain an image which reflects surface materials
only. Since cast shadows only change the illumination of back-
grounds, the illumination invariant features will attenuate shadow
effects. One of the approximately illumination invariant spaces de-
vised by Gevers et al. [11] is first used to transform the color space.
The transform favored is the spacec1c2c3, defined via

{c1, c2, c3} = arctan

[ {R, G, B}
{max(G, B), max(R, B), max(R, G)}

]
This color space has the virtue of being approximately invariant to
shading and intensity changes, albeit only for matte surfaces under
equi-energy white illumination.

Here we take another tack entirely: rather than redefining color
in general, we concentrate on considering how the current cam-
era handles differences in illuminant color. After all, what is a
shadow? We can approximate it by the idea that areas not in
shadow are directly illuminated, say by sunlight, but also receive
indirect lighting, say from sky light. And areas in the umbra are
likewise illuminated indirectly but lack a direct component — in
essence, then, the color of the light combination is different. As a
simple approximation we say that combinations of light are char-
acterized by their Planckian temperatureT ; this is the idea under-
lying the concept of correlated color temperature [12]. If we char-
acterize lighting by Planck’s law, then the effect of lighting change
amounts to temperature change. SinceT occurs in an exponential
in Planck’s law, we can remove the effect of lighting entirely by
taking logarithms of color ratios and projecting perpendicular to
the direction of lighting change [13]. This direction is dependent
on what camera we’re using — e.g., a webcam [14] may produce
a different direction than does a camcorder.
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Fig. 1. (a): Original image. (b): Ostensibly invariantc1, c2, c3

image. (c): Grayscale shadow-invariant image. [Color images may
be viewed at www.cs.sfu.ca/∼mark/ftp/Icme03/icme03.pdf]

What we give up, in this way, is the 3-dimensional nature of
color: the resulting illumination-, and hence shadow-invariant (or
at least resistant) image is a 1-D grayscale image. As an example,
Fig. 1(a) shows a color image with an obvious shadow: the sun
is behind the two people and their shadows fall across the path.
Fig. 1(b) shows the same image, again in color, but in the osten-
sibly invariant color spacec1c2c3. The grayscale image Fig. 1(c),
projected orthogonal to theT direction, is clearly superior.

In this paper, we specifically make use of the new type of il-
lumination invariant image. If lighting is approximately Planck-
ian, then as the illumination color changes, a log-log plot of 2-
dimensional{log(R/G), log(B/G)} values for any single surface
forms a straight line, provided camera sensors are fairly narrow-
band [13, 15, 14]. Thus lighting change reduces to a linear trans-
formation along an almost straight line. Finding that line is a cali-
bration task. We can use any target image, such as a Macbeth Col-
orChecker [16] to find the best direction of all such lines, and then
apply that same direction to any new image. The projection or-
thogonal to the lighting-change direction greatly attenuates shad-
owing.

We further present an inertia enhanced snake model for track-
ing objects with shadows. We introduce two inertia terms. The
first one adds an energy term based on the predictive contour; the
second is a chordal constraint which tries to maintain the shape
of the contour from frame to frame. This term attracts the active
contour to converge to a shape similar to the one in the previous
video frame. As well, instead of simply using the predictive con-
tour to re-initialize the snake, we construct a new initial contour
by a uniform expansion along the normal of the previous contour.
This scheme prevents the contour from erroneously tracking fea-
tures inside the true boundary of the object. At the same time, the
new inertia energy terms make the snake ignore distracting ele-
ments. As well, if the object stops moving temporarily, the snake
will evolve according to the inertia terms in the predictive contour
and converge to a shape that corresponds to the motion predic-
tion result and similar to the shape in the last frame. We adopt
an affine motion model for global motion estimation and camera
motion compensation with the result that our scheme can work in
a general video environment.

2. SHADOW RESISTANT GRAYSCALE IMAGE
Suppose a surface is illuminated by Planckian lighting. In Wien’s
approximation of Planck’s law, illuminationE(λ) is given by

E(λ) = Ic1λ
−5e−

c2
λT

whereI is intensity,T is temperature, andc1 andc2 are constants.
Suppose narrowband camera sensors are approximately spike sen-
sitivitiesQk(λ) = qkδ(λ−λk), k = 1..3. In a Lambertian model,
thecolor ρk for a point with normal vectorn and reflectanceS(λ),
illuminated from directiona, is given by

ρk = a ·n
∫

E(λ)S(λ)Qk(λ)dλ = c1a ·nIS(λk)λ−5
k e

− c2
λkT qk

Plotting the log-ratiosr = log[ρ1/ρ2] andb = log[ρ3/ρ2],
for a given reflectance surface we have a linear relationship

r − log[
q1S(λ1)λ

5
2

q2S(λ2)λ5
1

] = (b− log[
q3S(λ3)λ

5
2

q2S(λ2)λ5
3

])
λ1 − λ2

λ3 − λ2

λ3

λ1

But no matter what the surface, every surface’s line has the same
slope. Therefore, in the direction orthogonal we arrive at an illu-
mination invariant grayscale image.

2.1. Camera Calibration
To calibrate our particular camera, we use a set of color patches,
as in Fig. 2. LetP be the collection of log-log ratio pair sets
{(rk

i , bk
i )|i ∈ I, k ∈ K} whererk

i = log(Rk
i /Gk

i ) and bk
i =

log(Bk
i /Gk

i ); (Rk
i , Gk

i , Bk
i ) is the color of patchi under illumina-

tionk in the RGB color space. We first shift the log-log ratio vector
such that the center of the cluster corresponding to one patch un-
der different illuminations is located at the origin of the coordinate
system. The best line in Fig. 3 is found by Least Squares or a ro-
bust method. The invariant image is calculated as the grayscale
image formed by projection of any log-log pixel onto the orthogo-
nal direction.

3. SNAKE MODEL WITH INERTIA TERMS
3.1. Snake Equation with Predictive Contour Inertia and Chordal
String Constraints

In this section, we enhance the robustness of active contours in the
tracking problem by a new snake equation (cf. [17]):

minX(s),Y (s)

∫
s
I(X(s)) + I(Y (s))

+ γ
2
(E(X(s), C(s)) + E(Y (s), D(s))) + ρ/2G(X(s), Y (s))ds,

with I(X) = α
2
|∇X(s)|2 + β

2
|∇2X(s)|2 + P (X(s))

whereX(s) is the active contour in the current frame, andY (s)
is an auxiliary contour coupled withX(s). It is X(s) shifted
by half the arc length indices: if s = 0..1 for X(s), thenY =
Y (s′), s′ = 0..1, corresponding ton going fromN/2 to N , and
then from0 to N/2. Then we try to keep chords (or more prop-
erly, diameters)X(s)-to-Y (s′), for s, s′ = 0..1, the same as in
the previous frame — this is an inertial shape constraint.

CurvesC(s) andD(s) are the prediction contours from the
previous frame. Energy termsE(·, ·) andG(·, ·) are two inertial
terms. As in a traditional snake, the internal energy of the active
contour is coded via a term(α/2)|∇(·)|2 + (β/2)|∇2(·)|2. Fi-
nally, P (·) is the external force based on the feature of interest,
such as object motion. We use the natural choice

E(A(s),B(s)) = ‖A(s)−B(s)‖2

and forG(·, ·),
G(A(s), B(s)) = [‖A(s)−B(s)‖ − d(s)]2



whered(s) is a distance function fromX(s) to Y (s), for chords
parameterized bys = 0..1. In a Euclidean norm, the resulting Eu-
ler Equation leads to an evolution equation in artificial
parametert as follows:

∂X
∂t

= αXss − βXssss −∇P (X) + γ(C −X)

+ρ (Y (s)−X(s))
‖X(s)−Y (s)‖ (‖X(s)− Y (s)‖ − d(s)) = 0,

∂Y
∂t

= αYss − βYssss −∇P (Y ) + γ(D − Y )

+ρ (X(s)−Y (s))
‖X(s)−Y (s)‖ (‖X(s)− Y (s)‖ − d(s)) = 0

As is usual, we actually replace the potential term−∇P (X) in
the above equations by a generalized force termFext(X).

The initial stateX(s) isX0(s); the initial state ofY (s) is cou-
pled viaY0(s) ≡ Y0[1/n] = X0[

1
N

((n + N
2

) modN)] with inte-
ger n; D[1/n] = C[ 1

N
((n + N

2
) modN)]; and d(s) =

‖Xlast frame(s) − Ylast frame(s)‖. The coupled equations try
to maintain the shape of the contour from frame to frame by a
chordal string constraint. Weightρ controls the degree of shape
cohesiveness. The other new inertia force term in this modified
active contour for the tracking problem is based on the prediction
contour. Weightγ controls the degree the prediction has on the
contour tracking. Note that the solution for the tracking contour
is X(s): Y (s) is an accessory contour used only in the solution
process, and in fact has solutionX[ 1

N
((n + N

2
) modN)].

3.2. Contour Prediction and Smoothing

We predict the future contour position and shape by the method of
block-wise motion estimation. For every point(x, y) on the previ-
ous contourXlast frame, a square block of widthd is constructed
centered on the pixel. The best matching block center in a search
window of sizew is selected as the predicted point:

(∆̂x, ∆̂y) = arg min∆x∈(−w/2,w/2),∆y∈(−w/2,w/2)∫ x+d/2

ξ=x−d/2

∫ y+d/2

η=y−d/2
|u(ξ + ∆x, η + ∆y, t)− u(ξ, η, t−∆t)|

dξdη , C = Xlast frame + (∆̂x, ∆̂y)

whereu is the image sequence.
Motion estimation sometimes fails to estimate the correct fu-

ture contour position. This will occur if some part of the previous
contour does not fall at the boundary of an object, a situation very
common for snake tracking of objects with concave boundaries.
We propose a new approach for smoothing the prediction contour:
we apprehend the smoothing process as a self-evolving curve with-
out external force: ∂C

∂t
= α0Css − β0Cssss

A stopping time has to be specified so that the curve will not
distort too much while smoothing the singular points. One prob-
lem of the smoothing process is that the contour shrinks during
the process of smoothing. Therefore, we cannot use the prediction
contour as the initial contour for the next frame tracking. So we
calculate the initial contour by a uniform expansion of the previous
frame’s tracking result:

Xini = Xlast frame − cn
wheren is the inwards normal ofXlast frame andc is a constant.

3.3. Dominant Motion Compensation; External Force

To remove the dominant camera motion, we adopt an affine model;
the affine flow field can be represented as

θ1(x, y) = p1 + p2x + p3y, θ2(x, y) = p4 + p5x + p6y

(a) Illumination 1. (b) Illumination 2. (c) Illumination 3.

Fig. 2. The color chipboards used for camera calibration.

Fig. 3. Regression in log-log plot gives lighting change direction.

where~p = {p1, p2, p3, p4, p5, p6}T are the parameters to be esti-
mated. In matrix notation,

~θ(x, y) = A(x, y)~p, with A(x, y) =

(
1 x y 0 0 0
0 0 0 1 x y

)

The optical flow equation can be written as

∇uT (A~p) + ut = 0

with Least Squares solution

~p = (
∑

AT∇u∇uT A)−1(
∑

−AT∇uut)

In our tracking scheme, two motion detection maps are gener-
ated. The first one is based on the original video with global mo-
tion compensated. The other one is based on the shadow invariant
global motion compensated images. We then use a simple thresh-
olding scheme to detect the motion feature in both sequences. The
intersection of both these motion detecting results produces an im-
age segmentation map which is used to calculate the external force
field of the snake based on the Gradient Vector Flow scheme [18].

4. EXPERIMENTAL RESULTS

Using a commercial camcorder (a Canon ES60), we first calibrated
the camcorder to obtain the shadow invariant orientation. The
Macbeth color chipboard with 24 patches is shown in Fig. 2. Im-
ages were formed under under three standard illuminants, compris-
ing a daylight and two different indoor lightings. (Note, however,
that standard lights are not at all necessary to calibrate a camera.)
Fig. 3 shows that a scatter plot of the center-shifted log-log ratio
data gives the illumination invariant orientation of the camcorder.

Fig. 4 shows the motion detection result for a two-color ball
rolling on the ground based on the original image sequence and the
illumination invariant sequence. The traditional motion detection
scheme produces large errors on both the object’s and shadow’s
boundary. Motion detection based on the shadow invariant image
obtains much better results: the shadow’s influence is nearly to-
tally removed, and we also note that the background of the shadow



(a) (b)
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Fig. 4. Motion detection map. (a) Frame 1; (b) Frame 2; (c) Mo-
tion map by traditional scheme; (d) Motion map by shadow invari-
ant scheme.

(a) Frame 1 (b) Frame 7 (c) Frame 13

(d) Frame 19 (e) Frame 25 (f) Frame 31

(g) Frame 37 (h) Frame 43 (i) Frame 50

Fig. 5. Tracking result with proposed method for thebaby se-
quence.

invariant image motion detection result is much clearer. Recall that
to increase robustness we use the intersection of the motion detec-
tion map of the original image sequence and that for the shadow
invariant image sequence as the final motion detection map. Fig. 5
shows the result for tracking a baby’s head, with an adjacent promi-
nent shadow evident, under indoor lighting. The result shows that
the contour is well tracked without being distracted by the shadow.

5. CONCLUSION

We utilize a new method for effective shadowremoval, for tracking
objects with shadows. Without the confounding factor of shadow
edges, the real object can be tracked. This could be very useful for
higher level vision processing such as gesture or behavior recog-
nition. Future research directions include making the algorithm
work in real time applications and using extra information from

static scenes in webcam imagery.
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