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ABSTRACT

In this paper, we present a novel image interpolation method
based on variational models with both smoothing and ori-
entation constraints. By introducing the orientation con-
straint, we simplify the nonlinear PDE problem into a series
of problems with explicit solutions. In our model, the gradi-
ent directions for the interpolated pixels are first estimated
using a modified orientation diffusion method. Using these
estimated gradient directions adaptive directional interpola-
tion is carried out. An effective numerical implementation
of the adaptive directional interpolation is presented for the
case of upsampling by factors of two. This implementation
had very low complexity and is well suited for real-time ap-
plications.

1. INTRODUCTION

Image interpolation or image magnification is used to in-
crease the resolution of an image by estimating the pixel
intensities on an upsampled grid. The most commonly used
image interpolation methods, such as nearest neighbor in-
terpolation, bilinear interpolation and bicubic interpolation,
can result in blocky interpolated images with staircase edges.
Several schemes for edge preserving interpolation have been
presented. In [1], edge positions and directions are esti-
mated in local image areas. A truncated Fourier expansion
series is used to model the shape of small patchs of an im-
age which have edges across them. By introducing non-
linear operations high frequency components can be recon-
structed. Other nonlinear methods such as the rational filter
[2] can also produce better results than the traditional mod-
els. The problem of these kinds of models is that they use
small regions, such as three by three, which are often not
large enough for good edge extraction. In fact, a rational fil-
ter cannot distinguish a pulse from a edge, for which differ-
ent interpolation schemes should be used. in [3] a Bayesian
approach is employed to preserve edges and other discon-
tinuties in image expansion. In [4], an anisotropic diffusion
based model is presented for image interpolation. Another

iterative interpolation model is presented in [5], in which the
image interpolation problem is formulated as a inverse prob-
lem. In [6], edges are explicitly detected and two phases,
rendering and correlation, are used for image interpolation
in a iterative scheme. In [7], a directional adaptive interpo-
lation method is presented which is realized by a one pass
interpolation scheme.

We have found that a PDE (partial differential equation)
scheme cannot be directly applied for the diffusion of en-
larged grids of a image. Large scale control must be pre-
sented to guide the diffusion process. In this paper we pro-
pose a new method to solve the edge preserving image inter-
polation problem. By contrast to the method in [4], we have
formulated the interpolation problem as a variational prob-
lem with both smoothness and orientation constraints. The
reason for introducing the constraint of orientation is that
we not only simplify a nonlinear PDE problem which needs
iteration for its solution into a series of simple problems
with explicit solution, but we also can apply more effective
orientation control. By solving the variational problem we
obtain the relations with which the pixels in the upsampled
grid should comply. We present a one-pass solution to the
image interpolation problem for upsampling by powers of
two. In such cases the computational complexity of the al-
gorithm is greatly reduced, making the method suitable for
real-time applications. At the same time, we obtain results
comparable to those produced by more complex iterative
methods such as isophote-based interpolation [4].

2. IMAGE DIRECTION ADAPTED
INTERPOLATION

The image interpolation problem can be formulated as the
following variational problem,

û = min
u

(
∫

x

∫
y

ρ(‖∇u(x, y)‖)dxdy) (1)
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with the constraint,

u(ms∆, ns∆) = u′(m,n) 0 ≤ m ≤
⌊ w

s∆

⌋
,

0 ≤ n ≤
⌊

h

s∆

⌋
(2)

where u′(m,n) is the digital image before interpolation;
ρ(·) is a non-negative convex function; ∆ is the grid size
for the upsampled digital image, assumed to be the same in
both the x and the y directions; w and h are the width and
height of the image, respectively; and s is the scaling factor.

Directly solving this variational problem leads to a com-
plex and difficult computational solution, usually involving
iterative operations. Another more severe problem of di-
rectly solving Equation (1) is that it is often a ill-posed prob-
lem and the solution heavily depends on the initial value se-
lected. Therefore, the initial value would need to be very
carefully selected to achieve a good image interpolation.

To mitigate this dependence on the selection of a good
initial value, we introduce an additional constraint on the
orientation of the interpolated image,

θ̂ = min
θ

(
∫

x

∫
y

φ(‖∇θ(x, y)‖)dxdy) (3)

in which θ = arg[∇u(x, y)] is the gradient angle of u(x, y),
and φ(·) is a non-negative monotonic function. We assume
that the gradient angles on the original grid are known, and
that the orientations for these pixels do not change when
scaling the image, i.e.,

θ(ms∆, ns∆) = θ′(m,n) 0 ≤ m ≤
⌊ w

s∆

⌋
,

0 ≤ n ≤
⌊

h

s∆

⌋
(4)

(In reality, we use a numerical scheme to get estimates for
θ′(m,n) on the original grid.) We then simplify the non-
linear variational problem by reducing it to a series of opti-
mization problems.

Based on these assumptions, we first solve the varia-
tional problem of (3) based on the constraint of (4), thus
obtaining the estimates θ̂(x, y). Next, we solve the problem
of (1) based on the constraints of both (2) and (4), thus ob-
taining the scaled image û(x, y). In the next two sections,
we discuss the solution of these two parts of the problem in
more detail.

2.1. Orientation Estimation

In this section we discuss the problem of estimating the
gradient direction of the unknown pixels on the upsampled
grid. The scheme in this paper is inspired by the orientation
diffusion for noisy image data presented by Perona [8]. We

formulate the orientation estimation for the scaled image as
the following variational problem,

θ̂ = min
θ

(
∫

x

∫
y

[1 − cos(‖�θ(x, y)‖)]dxdy) (5)

with the constraint that θ(ms∆, ns∆) = θ′(m,n), where
θ′(m,n) = arg(�u′(m,n)) denotes gradient angles before
upsampling and θ(x, y) = arg(�u(x, y)) the gradient an-
gle at (x, y) after upsampling. The Euler Equation corre-
sponding to (5) is,

� · [ sin(‖�θ(x, y)‖)
‖�θ(x, y)‖ � θ(x, y)] = 0 (6)

In our numerical estimation, only the four neighbouring di-
agonal pixels are used, so that numerically Equation (6) re-
duces to ∑

k

sin(θk − θ(i, j)) = 0 (7)

This nonlinear equation (7) can be solved easily for its root

θ(i, j) = arctan(
∑

k sin θk∑
k cos θk

) + 2kπ (8)

Since this orientation diffusion scheme does not account for
gradient strengths, weak features may have undue influence;
hence we have introduced a weighting as follows,

θ(i, j) = arctan(
∑

k Ak sin θk∑
k Ak cos θk

) + 2kπ (9)

in which Ak is the gradient magnitude corresponding to
pixel k. Thus Equation (9) becomes the numerical solution
of a weighted version of Equation (5), namely,

θ̂ = min
θ

(
∫

x

∫
y

w(x, y)[1 − cos(‖�θ(x, y)‖)]dxdy) (10)

in which w(x, y) is proportional to the gradient at (x, y).

2.2. Directional Interpolation Scheme

The interpolation problem is formulated as the following
variational problem,

û = min
u

(
∫

x

∫
y

|∇u(x, y)|dxdy) (11)

with the gradient direction constraints,

ux√
u2

x + u2
y

= cos[θ̂(x, y)]

uy√
u2

x + u2
y

= sin[θ̂(x, y)] (12)
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together with the intensity constraint of Equation (2). The
Euler Equation of (11) is,

� · ( �u(x, y)
|| � u(x, y)|| ) = 0 (13)

Expanding (13) and substituting Equation (12), we obtain,
after some simplification,

uxx sin2 θ̂+uyy cos2 θ̂− (uxy +uyx) cos θ̂ sin θ̂ = 0 (14)

We discretize Equation (14) with the following scheme in
which for simplicity u(m,n) is used to denote u(m∆, n∆):

uxx(m∆, n∆) � [u(m−1, n)+u(m+1, n)−2u(m,n)]/∆2

uyy(m∆, n∆) � [u(m,n−1)+u(m,n+1)−2u(m,n)]/∆2

uxy(m∆, n∆) � [u(m+1, n+1)+u(m−1, n−1)−
u(m − 1, n + 1) − u(m + 1, n − 1)]/4∆2

and
u(m,n− 1) � [u(m + 1, n− 1) + u(m− 1, n− 1)]/2
u(m,n + 1) � [u(m + 1, n + 1) + u(m− 1, n + 1)]/2
u(m− 1, n) � [u(m− 1, n− 1) + u(m− 1, n + 1)]/2
u(m + 1, n) � [u(m + 1, n− 1) + u(m + 1, n + 1)]/2

Using the above equations in (14) and solving for u(m,n),
we obtain the final scheme for interpolating u(m,n) on the
upsampled grid from its four diagonal neighbours:

u(m,n) =
1
4
[u(m + 1, n + 1) + u(m − 1, n + 1) +

u(m + 1, n − 1) + u(m − 1, n − 1)]
1
2
[u(m + 1, n + 1) + u(m − 1, n − 1) −

u(m − 1, n + 1) − u(m + 1, n − 1)]

cos θ̂ sin θ̂ (15)

Equation (15) yields a fast factor-of-two interpolation
scheme as illustrated in Figure 1, in which the pixel index-
ing reflects the upsampled grid. The order of the interpola-
tion process is as follows. First, pixels in the original grid
are upsampled to the (m,n) grid; for example let four of
these be (m − 1, n − 1), (m + 1, n − 1), (m − 1, n + 1)
and (m + 1, n + 1). Then the pixel at (m,n) is interpo-
lated from its estimated orientation and the intensities of
these four diagonal neighbours. The pixels at (m − 2, n),
(m,n− 2), (m + 2, n) and (m,n + 2) are interpolated in a
similar way. Then, the pixel at, say, (m−1, n) can be inter-
polated from the pixels at (m−2, n), (m−1, n−1), (m,n)
and (m − 1, n + 1) with the same interpolation scheme,
since the relative positions of these pixels are in fact just a
45 degree rotation from the first scheme. Similarly we can
obtain the interpolated pixels at (m,n− 1), (m + 1, n) and
(m,n + 1). The process can be iterated with the resolution
increased by a factor of two on each iteration.

Image Pixel

(m-1, n-1) (m, n-1) (m+1, n-1)

(m-1, n+1) (m, n+1) (m+1, n+1)

(m-1, n) (m+1, n)(m, n)(m-2, n)

(m, n-2)

(m, n+2)

(m+2, n)

Figure 1: Fast Interpolation Scheme

3. EXPERIMENTAL RESULTS

Figure 4 shows the results of the proposed method com-
pared with the results of two standard interpolation schemes,
the bicubic and the bilinear interpolators, in Figures 2 and 3,
respectively. This example uses a colour image of a flower
which has been upsampled by four times in these three fig-
ures. To interpolate a colour image, we adopt a simple
scheme which interpolates the R, G and B channels sepa-
rately and then combines them together to produce the final
interpolated result.

We can see that the proposed model is superior to the
traditional bilinear and bicubic model, producing smoother
interpolations over linear structures such as the stamens of
the flower. By contrast, both the bicubic and the bilinear
interpolators produce noticably more jagged results. The
method we propose produces more pleasing results and does
so efficiently and quickly.

Figure 2: Interpolation result of bicubic method.

  3

Hao Jiang


Hao Jiang




Figure 3: Interpolation result of bilinear method.

Figure 4: Interpolation result of proposed method.

4. CONCLUSION

The contribution of this paper is a new PDE based scheme
for image interpolation. We formulate interpolation as a
variational problem with both smoothness and orientation
constraints. Introducing the orientation constraint allows
not only the simplification of a nonlinear PDE problem need-
ing iteration into a series of simple problems with explicit
solution, but also allows more effective orientation control.
We present a one-pass solution to the image interpolation
problem for scaling by powers of two. The computational
complexity of the algorithm is greatly reduced in this case,
making the method suitable for real-time applications. At
the same time, we obtain results comparable to those of
more complex iterative methods.
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