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Abstract

We propose a novel consistent max-covering scheme for

human pose estimation. Consistent max-covering formu-

lates pose estimation as the covering of body part polygons

on an object silhouette so that the body part tiles maximally

cover the foreground, match local image features, and sat-

isfy body linkage plan and color constraints. It uses high

order constraints to anchor multiple body parts simultane-

ously; the hyper-edges in the part relation graph are essen-

tial for detecting complex poses. Because of using multiple

clues in pose estimation, this method is resistant to clut-

tered foregrounds. We propose an efficient linear relaxation

method to solve the consistent max-covering problem. Ex-

periments on a variety of images and videos show that the

proposed method is more robust than locally constrained

methods for human pose estimation.

1. Introduction

Human pose estimation has been receiving a lot of inter-

est because of its potential important applications in surveil-

lance and human computer interaction. In such applications

rough object silhouettes can often be obtained using sim-

ple methods such as background subtraction or color seg-

mentation. In this paper, we propose a novel consistent

max-covering scheme and efficient linear method to inte-

grate object foreground map with other image features and

body plan constraint to achieve reliable pose estimation.

Silhouettes have been used as a direct input in human

pose estimation. For simple poses with little self-occlusion,

rough body configuration can be extracted by skeleton op-

eration on clean silhouettes [1]. Machine learning methods

have also been studied for pose inference using silhouettes

[2, 3]. Because of the large variety of human poses, pose

regression is a hard problem. Learning methods have to

process high dimensional input data and very large training

sets. Dimensionality reduction methods such as probabilis-

tic principal component analysis [4], manifold learning [5]

and Gaussian process dynamical model [6] have been used

to relieve the dimension explosion problem. These methods

are currently used for restricted classes of poses and work

with clean silhouettes. Shape matching methods have also

been used in pose estimation [7, 8, 9]. They match silhou-

ettes or edge maps and are more resistant to clutter. For

free-style poses, shape matching methods have high com-

plexity because they have to search through a huge exem-

plar database.

Apart from the aforementioned top-down approaches,

bottom-up pose estimation methods have also been inten-

sively studied. In the bottom-up methods, body part candi-

dates are first detected and then assembled to fit image ob-

servations and a body plan. This approach is most related to

our method. With silhouettes, an efficient pose estimation

method [10] has been studied based on tree model and pos-

terior sampling. This method is resistant to foreground clut-

ter. One difficulty of this formulation is the “over-counting”

problem, which happens when multiple body parts occupy

the same pixel in an image. Other stochastic searching

methods [11, 12] and dynamic programming [13, 14] have

also been used in pose optimization. Non-tree methods have

recently been proposed to facilitate stronger structure con-

straints. They are optimized using convex programming

[15, 17] or belief propagation [18]. Previous body part as-

sembly methods use local pairwise constraints and do not

have mechanisms to control the global structure. For com-

plex poses, local information is not sufficient to yield a cor-

rect pose estimation.

In this paper, we follow the body part assembly scheme

and propose a novel consistent max-covering method for

human pose estimation. In such a formulation, pose estima-

tion becomes the problem of covering an object foreground

map with a bunch of body part tiles. These tiles maximally

cover the foreground, match image local appearance and are

consistent in terms of the body linkage plan and other sym-

metry constraints. Max-covering with consistent constraint

is denoted as consistent max-covering. It introduces high

order relations among all the body parts since each body

part may influence others when forming a covering. The

high order body part correlation is essential for finding com-

plex poses when self-occlusions or other part interactions
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occur. This method also solves the “over-counting” prob-

lem since we explicitly express the overall coverage of a

body part assembly. We propose a linear formulation which

can be efficiently solved using a relaxation method. Using

multiple clues in pose estimation, the proposed method is

resistant to occlusion and works with low quality silhouette

or soft object foreground mask. Experiments on a variety of

images and videos show that the proposed method is robust

and efficient in human pose estimation.

2. Pose Estimation by Consistent Max-

Covering

Given an object foreground map from color segmen-

tation or background subtraction, pose estimation can be

simulated as a jigsaw puzzle problem. In the following,

we show how a pose estimation problem can be formu-

lated using the consistent max-covering scheme and how

we can solve consistent max-covering using an efficient lin-

ear method.
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Figure 1. Left: 10-part body model. Right: relation graph of body

parts. The gray area shows the example of a hyper-edge.

We use the widely used 10-part body model which con-

tains head, torso, upper arms, lower arms, upper legs and

lower legs. Each body part is represented as a rectangle.

Our method can also be easily extended to more complex

body part shapes. The cardboard figure and the part rela-

tion graph are shown in Fig. 1. In our model, the basic

body plan follows a tree structure. Apart from interactions

between neighboring body parts, consistent max-covering

formulation introduces hyper-edges linking body parts that

cover the same foreground region, and edges that constrain

symmetry body parts. The tree is rooted at the torso and has

directional edges. The other two kinds of edges are non-

directional.

Similar to other bottom-up pose estimation methods, we

first locate potential body part candidates in target images

so that we can use them in consistent max-covering. We

use simple box detectors to find potential candidates on the

edge map of the target image. Chamfer matching is used

to match body part templates to the target edge map at dif-

ferent locations and rotations. Non-minimum suppression

is then used to locate body part candidates. Since we have

a rough foreground map, body part candidates can be fur-

ther pruned: we only keep the body part candidates whose

average foreground potentials are greater than a threshold.

2.1. Consistent Max-Covering

Each body part candidate covers some pixels in the ob-

ject foreground. Intuitively, the body part tiles should cover

foreground pixels as much as possible in a consistent man-

ner. Each pixel in the foreground map corresponds to a

floating point number from 0 to 1 which indicates the fore-

ground potential. The higher the potential is, the more likely

the pixel belongs to the object foreground. We denote the

foreground map as fx,y . The consistent max-covering can

be formulated as the following optimization problem:

max
C
{

∑
(x,y)∈I

rx,y − αM(C)− βP (C)− γS(C)}

s.t. rx,y = fx,y if (x, y) is covered by parts, else 0

C is a body part covering (1)

where rx,y is the covered potential at pixel (x, y) with the

current body part covering C: if the pixel (x, y) in the fore-

ground I is covered by body parts, rx,y takes value fx,y

and otherwise 0. Therefore, the first term in the objective

function equals the overall potential covered by all the body

parts. The second term M(C) is the cost of matching the

body parts to local image features. The third term P (C) is

the degree of the body part configuration following a human

body plan. The last term S(C) penalizes the color difference

of symmetrical body parts: if the symmetrical parts, e.g.

upper arms, have large color difference, S has large value.

We reverse the sign of the last three terms so that they are

minimized. α, β and γ are positive constants to control

the weight among the energy terms. This optimization thus

tends to find a consistent max-covering on the object fore-

ground.

The consistent max-covering in Eqn.(1) is a combinato-

rial search problem. It is generally NP-hard because of the

loopy part relations introduced by covering terms. The large

number of feasible covering configurations makes naive ex-

haustive search infeasible, and for such a problem greedy

method is not sufficient. We use a global search method to

tackle this problem. In this following, we propose an effi-

cient linear solution.

2.2. Linear Solution

We linearize the consistent max-covering optimization

in Eqn.(1) and obtain a mixed integer linear program. It can

be further relaxed into a much simpler linear program for

efficient solution.

2.2.1 Foreground Covering Potential

In Eqn.(1) the covering term in the objective function is∑
(x,y)∈I rx,y , which equals the total potential covered by
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Figure 2. (a) Body part covering example in which part candidates

(n, i), (m, j) and (p, k) cover point (x, y) in the foreground map.

(b) Definitions of edge variables and node variables.

all the body parts. r represents the covering potential at a

pixel. We now explicitly express how the variable r is re-

lated to the choice of body part locations.

We introduce a binary indicator variable ηn,i, which is

1 if body part n selects target candidate i and otherwise 0.

ηn,i is therefore a node variable that corresponds to each

node of the body graph. Since each body part only has one

target location, we need to make sure
∑

i∈T (n)

ηn,i = 1, ∀n ∈ V

where T (n) is the target candidate set of body part n; V
is the set of all body parts; we also use V to denote the

node set of the body graph. We are now ready to specify the

covering term using the node variable η. We introduce the

following constraint for the covering variable r,
∑

∀(n,i) covers (x,y)

ηn,i ≥ rx,y

in which (n, i) denotes the ith candidate for body part n.

We further need to bound rx,y to be a nonnegative number

that can be as big as the foreground potential,

0 ≤ rx,y ≤ fx,y

For rx,y not covered by any candidate tiles, it is set to zero.

As an example shown in Fig. 2(a), there are totally three

body part candidates (n, i), (p, k) and (m, j) covering the

foreground pixel (x, y). The constraint for rx,y is therefore

rx,y ≤ ηn,i + ηp,k + ηm,j and 0 ≤ rx,y ≤ fx,y .

It is not hard to verify that with the above formulation r
equals the covering potential: if at least one body part cov-

ers the foreground pixel (x, y), to maximize the objective

function in Eqn.(1), rx,y should equal fx,y , recalling that

body part indicator variable η is 0 or 1 and fx,y is between

0 and 1; if (x, y) is not covered by any part tiles, rx,y will be

0 because of the upper bound constraint. Therefore, given

such constraints,
∑

(x,y)∈I rx,y is indeed the overall cover-

ing potential of the body parts.

2.2.2 Image Matching Cost

Apart from the object foreground covering cost, assigning

each body part to a target location involves an image match-

ing cost. In this paper, the cost is the linear combination

of the Chamfer matching cost and the local covering cost.

Local covering cost equals 1 minus the average covering

potential. With the binary node assignment variable η, the

total image matching cost can be linearized as:

M =
∑

n∈V,i∈T (n)

cn,i · ηn,i

Here cn,i is the image matching cost of part n at location i.

2.2.3 Spatial Consistency

A good body part assignment should have neighboring body

parts linked together: the end points of consecutive body

parts are close, and connected limbs have similar orienta-

tions. To linearize the spatial consistency function P (.) in

Eqn.(1), we introduce an edge indicator variable ξn,i,m,j for

each directional tree edge (n, m); ξn,i,m,j is 1 if body part n
selects candidate i and body part m takes candidate j. The

definitions of the edge variable ξ and node variable η are

illustrated in Fig. 2(b).

Using edge assignment variable ξ, the total spatial con-

sistency cost is linearized as:

P =
∑

(n,m)∈E,i∈T (n),j∈T (m)

hn,i,m,j · ξn,i,m,j

where E is the tree edge set and the coefficient hn,i,m,j is

defined as

hn,i,m,j =

⎧⎨
⎩

aen,i,m,j if n is torso

adn,i,m,j

+b sin2(
θn,i−θm,j

2 )
otherwise

Here en,i,m,j is the Euclidean distance between a proper

end of a torso candidate and the start point of an upper body

part candidate; dn,i,m,j is the Euclidean distance between

the end point of part n at location i and the start point of

part m at location j; θn,i is the angle of part n at location

i and sin2(
θn,i−θm,j

2 ) penalizes large angle difference for

consecutive body parts; a and b are positive weight con-

stants.

The node variable η and the edge variable ξ are de-

pendent. The pairwise edge assignment has to be consis-

tent with the node assignment: each body part appearing

in different pairs must have a unique assignment of the

target candidate. To enforce the assignment consistency,

∀(n, m) ∈ E, we let

ηn,i =
∑

j∈T (m)

ξn,i,m,j , ηm,j =
∑

i∈T (n)

ξn,i,m,j

Recall that T (m) is the set of covering candidates for part

m. The above constraints imply that
∑

j∈T (m) ξn,i,m,j =∑
l∈T (k) ξn,i,k,l, k �= m and

∑
i∈T (n) ξn,i,m,j =∑

l∈T (k) ξm,j,k,l. This enforces the assignment consistency

at common nodes in the tree.
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2.2.4 Color Consistency

To linearize the color difference term S in Eqn.(1), we use

L1 norm to compute the color difference of two body parts

so that we can use a standard linear programming auxiliary

variable trick. Let H be the set of symmetrical body part

pairs. Term S can be linearized as

S =
∑

{n,m}∈H

3∑
k=1

(g+
n,m,k + g−n,m,k)

where g+
m,n,k and g−m,n,k are nonnegative auxiliary vari-

ables. We use 3 color channels k = 1..3. The nonnegative

auxiliary variables are constrained by the color difference at

each channel,

gn,k−gm,k = g+
n,m,k−g−n,m,k, k = 1..3, ∀{n, m} ∈ H

Here gn,k is the color of body part n at channel k. The color

of a body part can be computed using the node assignment

indicator variable ηn,i:

gn,k =
∑

i∈T (n)

ln,i,k · ηn,i

and ln,i,k is the average color of the candidate covering re-

gion i for body part n at channel k. It is easy to verify

that at least one variable in the pair of g+
n,m,k and g−n,m,k

will become 0, when the objective function is optimized;

otherwise we can zero one of them and obtain a better solu-

tion by subtracting the two variables with the smaller one of

them. Therefore, when the objective function is optimized,

g+
n,m,k + g−n,m,k = |gn,k − gm,k|, and S is the L1 color

distance between symmetrical body parts.

Note that the color symmetry term is a regularization

term in the objective function. The constraint of color is

therefore soft, which permits occasionally large discrepancy

of colors on symmetrical body parts.

2.2.5 Relaxation Solution

The above optimization is a mixed integer program with bi-

nary variables ξ, η and continuous variables r and g. Di-

rectly solving the mixed integer program has high complex-

ity. We relax it into the following linear program,

max{
∑

(x,y)∈I

rx,y − α
∑

n∈V,i∈T (n)

cn,i · ηn,i −

β
∑

(n,m)∈E,i∈T (n),j∈T (m)

hn,i,m,j · ξn,i,m,j −

γ
∑

{n,m}∈H

3∑
k=1

(g+
n,m,k + g−n,m,k)}

s.t. ηn,i =
∑

j∈T (m)

ξn,i,m,j , ηm,j =
∑

i∈T (n)

ξn,i,m,j ,

ξ ≥ 0, ∀(n, m) ∈ E∑
i∈T (n)

ηn,i = 1, ηn,i ≥ 0, i ∈ T (n), ∀n ∈ V

gn,k − gm,k = g+
n,m,k − g−n,m,k,

g+
n,m,k, g−n,m,k ≥ 0, ∀{n, m} ∈ H

gn,k =
∑

i∈T (n)

ln,i,k · ηn,i, k = 1..3, ∀n ∈ V

∑
∀(n,i) covers (x,y)

ηn,i ≥ rx,y,

0 ≤ rx,y ≤ fx,y, ∀(x, y) ∈ I

where ξ and η are relaxed into continuous variables in [0,1].

If we do not include the covering constraint term and color

symmetry term, the linear program on the tree structure

body plan is equivalent to the integer program and it can be

solved efficiently using dynamic programming. The non-

tree structure of consistent max-covering complicates the

solution. Its relaxation does not directly yield integer so-

lutions for node variables η. Direct rounding by selecting

the largest η for each body part yields poor results. Fortu-

nately, using the interior method, its solution almost always

contains very few large η. We threshold η to zero out most

variables. The typical threshold is 0.001. Similar to the ap-

proximation trick in [17], we can further construct a small

mixed integer program by only including the target candi-

dates corresponding to the nonzero η. The small mixed in-

teger program can be directly solved using simple exhaus-

tive enumeration or the more efficient branch and bound

method. Since the first step eliminates a large number of

covering candidates, the second exhaustive search step can

be quickly solved.

The average complexity of a linear program is roughly

linear to the number of constraints and logarithm to the

number of variables [19]. This simplex method heuristic

applies to our model for which primal-dual interior point

method is almost always faster than simplex method for

different problem sizes. The number of edge variables of

the proposed linear program is proportional to the square

of the number of target candidates n; the number of fore-

ground variables equals the number of foreground pixels

m. The number of constraints is in the same order as

the number of variables. The linear program thus has the

O((n2 +m) log(n2 +m)) average complexity. We can fur-

ther speed up the linear program by heuristics. The neigh-

boring tree nodes only accept quite limited set of candi-

dates: the pair of candidates too close or too far away can

be pruned. Using such a trick, the number of edge variables

and related constraints can be greatly reduced. The number

of foreground variables and constraints can also be reduced

by using a coarser representation of the foreground map:

instead of corresponding to each pixel, foreground variable

and constraint correspond to each region. Due to the slow
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Figure 3. Pose estimation using cluttered foreground. The gray-

scale images on the first and third columns are foreground maps

with different noisy levels; gray indicates potential 0 and white 1.

The pose estimation results are overlapped on the corresponding

color images.

Figure 4. Compare with pose estimation using max-covering

which ignores the consistency constraints. From left to right: in-

put image, foreground map, pose estimation using max-covering

and the result of consistent max-covering.

variation of the foreground map, down sampling will not de-

grade the performance. Typically we extract 100 torso can-

didates, 200-500 limb and head candidates, and use 2500-

5000 foreground variables to represent foreground map re-

gions. In a 2.8GHz Linux machine, the linear program takes

less than 20 seconds to converge.

3. Experimental Results

In this section, we evaluate the consistent max-covering

method for human pose estimation and compare the pro-

posed method with different approaches.

Fig. 3 illustrates the proposed method’s resistance to

cluttered foreground. The foreground map is obtained from

background subtraction and shown as the first image in

Fig. 3. We add clutter into the foreground map to simulate

foregrounds at different noisy levels. As shown in Fig. 3,

the consistent max-covering method works well with clut-

tered foregrounds. The result degrades mildly even though

there is substantial amount of clutter in both the object fore-

ground and background.

Fig. 4 illustrates the results of max-covering and consis-

tent max-covering. Max-covering maximizes the covering

potential while ignoring other consistency constraints. As

expected, max-covering may generate a body part covering

that does not resemble a human body plan. Consistent max-

covering is necessary to obtain a good result.

We proceed to test another variation of the linear method

in which we keep only the local part matching cost and the

tree structure spatial consistency constraint. Ignoring the

covering energy, this is in fact the formulation which can

Figure 5. Compare with dynamic programming (DP). The first two

rows are the results of DP and the last two rows show how the

proposed method improves the result.

Figure 6. Compare with a simpler linear formulation (Simple LP)

which uses only node variables. Rows 1-2 are the results of Simple

LP and the last 2 rows show the results of the proposed method.

Table 1. Average Number of Errors Per Frame in Pose Estimation

(B1-2, L1-2, T, F indicate ballet, lab, taichi and fitness videos)

B1 B2 L1 L2 T F

CM-Covering 0.46 0.74 0.90 0.77 1.29 1.40

DP 3.91 3.47 6.01 3.20 3.30 3.68

Simple LP 0.97 1.43 1.46 1.27 2.31 2.46

Tree [16] 2.80 2.48 1.29 1.09 2.40 1.56

Non-Tree [17] 1.30 1.26 1.51 1.46 2.19 2.08

be solved by dynamic programming (DP) [13]. The pro-

posed relaxation method is exact and equivalent to DP in

this case. Without global constraints, we expect more er-

rors. Fig. 5 shows how the proposed method improves the
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Figure 7. Per-frame error number distributions for different vari-

ations of the proposed linear method. CM-Covering is the pro-

posed method; DP ignores covering and color constraints; Simple

LP uses only node variables. Good performance is characterized

by large portion of a curve at small error range.

result over DP. The complete comparison of the proposed

method with DP is based on 6 test video sequences: 2 bal-

let sequences, 2 lab sequences and 2 videos from YouTube.

The ballet sequences include complex movements and body

part self-occlusions. In the YouTube sequences and the lab

sequences, actors wear baggy clothes and perform complex

movements. YouTube videos also have low image quality

due to heavy compression. There are totally 1464 images

in testing. The comparison using all the 6 test videos is

shown in Fig. 7 and Table 1. Fig. 7 shows the normal-

ized histograms of per-frame part detection errors for each

video. Since there are 10 body parts, the number of errors

per frame is from 0 to 10. The ideal pose detector should

have a single peak of 1 at 0 and vanishes anywhere else. A

good real detector has an error number histogram focused at

the left side and has a short tail at the right side. As shown in

Fig. 7, the proposed method is substantially better than DP.

The average number of errors per frame in Table 1 confirms

the observation, where the errors per frame of the proposed

method are less than 1/3 those of DP.

We further compare the proposed method with a closely

related linear programming (LP) formulation. If the body

part end point distance is measured with L1 norm, we can

use the auxiliary variable trick to construct a simpler linear

formulation that includes only node variables. In this re-

strictive case, the proposed method and the simple LP for-

mulation are equivalent with integer constraints. But the

relaxation solution has a big difference. As shown in Fig. 6,

the proposed method yields better results for challenging

cases. The comparison of the two methods using all the 6

Figure 8. Compare with tree inference method [16]. The first 4

rows are the results using tree inference and the last 4 rows show

results of the proposed method.

test videos is summarized in Fig. 7 and Table 1. The pro-

posed method is consistently better over all the test cases

with about half of the per-frame errors.

Our previous tests show that the proposed method is

indeed better than its related variations. The question is:

does it generate better results than simpler locally con-

strained methods? One method we compared is the infer-

ence method using tree structure [16]. We run the code

with this paper on our data. For fair comparison, we use

foreground mask to partially eliminate the background clut-

ter before using the code for body part detection. As shown

in Fig. 8, tree method sometimes misses body parts because

it does not incorporate the global body shape information;

the proposed method gives better results. The per-frame er-

ror number histogram comparison is shown in Fig. 10 and

the comparison of per-frame average error number is in Ta-

ble 1. The proposed method gives better results over all

the test cases. We further compare the proposed method
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Figure 9. Compare with non-tree method [17]. The first 4 rows

are the results using the non-tree method and the last 4 rows show

results of the proposed method.

with a non-tree method [17]. This method also uses only

local constraints. The results are shown in Fig. 9, Fig. 10

and Table 1. The proposed method still works much better.

More sample results of pose estimation using the proposed

method are shown in Fig. 11. The proposed method ro-

bustly detects body poses in the test sequences. As shown

in Fig. 11, a few more errors occur in the taichi and fitness

sequences. This is mostly due to the simple body part detec-

tor used in this paper. Weak image edges may result in error

local matching costs associated with body part candidates.

Better body part detector can be used to further improve the

results.

4. Conclusion

We propose a novel consistent max-covering scheme for

robust human pose estimation. The proposed scheme inte-

grates object overall shape in body part assembly for more
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Figure 10. Per-frame error distribution comparison with tree infer-

ence (Tree) [16] and non-tree optimization (Non-Tree) [17]. CM-

Covering is the proposed method. Good performance is character-

ized by large portion of a curve at small error range.

robust pose estimation. We combine different clues such as

edges, color symmetry, body linkage plan seamlessly and

try to find an optimal consistent max-covering of the object

foreground map using body part polygons. The proposed

method introduces high order correlations among multiple

body parts and greatly improves the robustness of pose es-

timation for complex movements. We propose a linear for-

mulation and an efficient relaxation method. Experiments

on challenging video sequences show that the proposed

method is robust and efficient in human pose estimation.

We believe the proposed method is useful for many appli-

cations including automatic surveillance and human move-

ment analysis.
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