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Abstract. We present a novel human body gesture recognition method using a
linear programming based matching scheme. Instead of attempting to segment
an object from the background, we develop a novel successive convexification
linear programming method to locate the target by searching for the best match-
ing region based on a graph template. The linear programming based matching
scheme generates relatively dense matching patterns and thus presents a key fea-
ture for robust object matching and human body gesture recognition. By match-
ing distance transformations of edge maps, the proposed scheme is able to match
figures with large appearance changes. We further present gesture recognition
methods based on the similarity of the exemplar with the matching target. Exper-
iments show promising results for recognizing human body gestures in cluttered
environments.

1 Introduction

Human body gesture recognition has attracted a lot of interest in recent years because
of its potential important applications in surveillance, human-computer interaction and
computer animation. Recognizing body gestures is also a challenging problem because
of articulated motion of human limbs and bodies and large appearance variations such
as the changes of clothing.

In this paper, we study problems where only a single camera is available. We present
a gesture recognition method based on a novel linear programming (LP) matching
scheme. The proposed LP scheme can be used to solve large scale L1 metric labeling
problems. Target matching in gesture recognition can be formulated as this subclass of
labeling problems. Different from standard matching schemes such as the graph cut and
belief propagation, the proposed LP relaxation method represents a label space with a
much smaller set of basis labels, and is thus more suited for very large label set match-
ing problems. A successive convexification scheme is proposed to solve the labeling
problem. Iteratively, the trust region shrinks based on previous relaxation solution and
the approximation becomes more accurate when the trust region becomes small. A new
aspect of the algorithm is that the cost function is replaced by the lower convex hull
at each stage — we re-convexify the cost, while focusing increasingly closely on the
global solution. This is novel. The proposed multi-stage relaxation method is found to
be more efficient than schemes such as the graph cut or belief propagation for the object
matching problem where a large searching range is involved. It can also solve problems
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for which traditional schemes fail. Based on the matching scheme, we propose a gesture
recognition method which has the following properties: (1) The method works for cases
when reliable background subtraction is unavailable, e.g., for still images; (2) It is quite
insensitive to the clothing of the figures in the image. In this paper, local features are
used because they have less variation than human parts and are therefore more reliable
in matching. Unlike global shape features such as shape context [7], local features also
enable the proposed scheme to be applicable to matching problems in cluttered envi-
ronments. To suppress the influence of appearance changes for humans, we propose to
match the distance transformations of the edge maps of the template and target images.
This representation makes matching figures in different clothing possible. We further
present a method to quantify the similarity of the template and the target object and
form a reliable gesture recognition system.

Different schemes have been studied for recognizing human body gestures. Back-
ground subtraction has been used in gesture recognition. The difficulty with this scheme
is that background subtraction is not robust and not always available, and the method
cannot distinguish gestures when body parts are covered by silhouettes. One method to
solve the problem is by extracting range data for the character in the scene using mul-
tiple cameras [1]. But such an approach is more expensive to deploy than monocular
systems. A body-part based matching model [2] is presented for human body gesture
recognition. As an extension, an SVM body-part matching method [3] is further pre-
sented. Mori [4] presents a segmentation based approach for part-based human body
gesture recognition. Another method is to match the target as a whole, e.g. the Chamfer
matching based method [5] in which tree structured binary templates are used to de-
tect pedestrians. One shortcoming of this approach is that it usually needs many more
templates than part-based schemes. Shape matching methods have also been applied
for recognition of human actions [6][7]. Shape matching based methods usually need
many fewer templates than the Chamfer matching scheme because the template de-
forms. These schemes work best in relatively clean background settings.

Object matching can be represented as a consistent labeling problem, and is essen-
tial for gesture recognition. Consistent labeling is NP-hard in general. Apart from a
few cases in which polynomial algorithms are available, approximation algorithms are
preferred for image matching. Much effort has been made to study efficient algorithms
for these problems. Relaxation labeling (RL) [14] uses local search, and therefore relies
on a good initialization process. ICM – Iterative Conditional Modes [9], another widely
applied method for solving labeling problem, is greedy and is found to be easily trapped
in a local minimum. In recent years, graph cut (GC) [11] and belief propagation (BP)
[10] have become popular methods for solving consistent labeling problems. GC and
BP are more robust than traditional labeling schemes and are also found to be faster
than the traditional stochastic annealing methods. But GC and BP are still very com-
plex for large scale problems that involve a large number of labels. Spectral graph theory
based methods [15] have also been studied for matching. The work most related to our
proposed scheme are the mathematical programming matching schemes. The early RL
methods belong to this class. One of the big challenges in designing mathematical pro-
gramming based labeling algorithms is to overcome local minima in the optimization
process. Different schemes have been proposed. Deterministic annealing schemes [12]
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have been successfully applied to matching point sets. Convex programming is another
scheme for labeling problems. Up to now, methods such as quadratic programming
and semidefinite programming can only be applied to small scale problems. Because
of its efficiency, linear programming has been successfully applied in vision problems,
e.g. estimating motion of rigid scenes [17]. A linear programming formulation [16] is
presented for uniform labeling problems and approximating general problems by tree
metrics. Another general LP scheme, studied in [13], is similar to the linear relaxation
labeling formulation [14]. This LP formulation is found to be only applicable to small
problems because of the large number of constraints and variables involved.

2 Gesture Estimation with Matching

In this section, we present a scheme for estimating human body gestures based on visual
pattern matching using linear programming. First, we present our novel linear program-
ming matching method, which forms the key component for gesture recognition. Then,
we study gesture recognition based on similarity measures.

2.1 Matching by Linear Programming

In L1 metric space, matching can be stated in general as the following consistent label-
ing problem:

min
f

ε :
∑

s∈S

c(s, fs) +
∑

{p,q}∈N
λp,q||fp − fq||

in which c(s, fs) is the cost of assigning label fs to site s; ||.|| is the L1 norm and f are
labels defined in L1 metric space; S is a finite set of sites; N is the set of non-ordered
neighbor site pairs; λp,q are smoothing coefficients. In the following discussion, we
assume that both S and label sets Ls are discrete and f are 2D vectors. The proposed
method can be easily extended to cases where labels have higher dimensionality. We can
always convert a discrete labeling problem into a continuous one using the following
procedure. First, we interpolate the costs c(s, fs) for each site piecewise-linearly such
that c(s, fs) become surfaces; then we extend the feasible region for f to the convex hull
supported by the discrete labels. The new problem is defined as continuous extension
of the original discrete problem. To simplify notation, we also use c(s, fs) to represent
the continuous extension cost function.

2.2 Approximation by Linear Programing

The above energy optimization problem is nonlinear and usually non-convex, which
makes it difficult to solve in this original form without a good initialization process.
We now show how to approximate the problem by a linear programming via linear ap-
proximation and variable relaxation as outlined in [8] by Jiang et al. To linearize the
first term, the following scheme is applied. A basis Bs is selected for the labels of each
site s. Then the label fs can be represented as a linear combination of the label basis as
fs =

∑
j∈Bs

ξs,j · j, where ξs,j are real valued weighing coefficients. The labeling cost
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of fs can then be approximated by the linear combination of the basis labeling costs
c(s,

∑
j∈Bs

ξs,,j · j) ≈
∑

j∈Bs
ξs,j · c(s, j). We also further set constraints ξs,j ≥ 0 and∑

j∈Bs
ξs,j = 1 for each site s. Clearly, if ξs,j are constrained to be 1 or 0, and the basis

contains all the labels, i.e., Bs = Ls, the above representation becomes exact. Note that
fs are not constrained to the basis labels, but can be any convex combination. To lin-
earize the regularity terms in the nonlinear formulation we can represent a free variable
by the difference of two nonnegative auxiliary variables and introduce the summation
of the auxiliary variables into the objective function. If the problem is properly formu-
lated, when the linear programming problem is optimized the summation will approach
the absolute value of the free variable.

Based on this linearization process, a linear programming approximation of the
problem can be stated as

min
∑

s∈S

∑

j∈Bs

c(s, j) · ξs,j +
∑

{p,q}∈N
λp,q

2∑

m=1

(f+
p,q,m + f−

p,q,m)

s.t.
∑

j∈Bs

ξs,j = 1, ∀s ∈ S

∑

j∈Bs

ξs,j · φm(j) = fs,m, ∀s ∈ S, m = 1, 2

fp,m − fq,m = f+
p,q,m − f−

p,q,m, ∀ {p,q} ∈ N
ξs,j, f+

p,q,m, f−
p,q,m ≥ 0

where fs = (fs,1, fs,2). It is not difficult to show that either f+
p,q,m or f−

p,q,m will
become zero and thus f+

p,q,m + f−
p,q,m = |fp,m − fq,m| when the linear program is

optimized. Therefore, the linear programming formulation is equivalent to the general
nonlinear formulation if the linearization assumption c(s,

∑
j∈Bs

ξs,,j ·j) =
∑

j∈Bs
ξs,j ·

c(s, j) holds. In general situations, the linear programming formulation is an approxi-
mation of the original nonlinear optimization problem.

Property 1: If Bs = Ls, and the cost function of its continuous extension c(s, j) is
convex, ∀s ∈ S , the LP exactly solves the continuous extension of the discrete labeling
problem. Ls is the label set of s.

Proof: We just need to show when LP is optimized, the configuration {f∗s =∑
j∈Bs

ξ∗s,j.j} also solves the continuous extension of the nonlinear problem. Since
c(s, j) is convex,

∑
j∈Ls

c(s, j)ξ∗s,j ≥ c(s, f∗s ). And, when the LP is minimized we

have
∑

{p,q}∈N λp,q

∑2
m=1(f

+
p,q,m + f−

p,q,m)=
∑

{p,q}∈N λp,q||f∗p− f∗q ||. Therefore

min
∑

s∈S,j∈Ls

c(s, j)ξs,j +
∑

{p,q}∈N
λp,q

2∑

m=1

(f+
p,q,m + f−

p,q,m)

≥
∑

s∈S

c(s, f∗
s ) +

∑

{p,q}∈N
λp,q||f∗p − f∗q ||
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Fig. 1. (a): The convexification process introduced by LP relaxation. (b): An example when the
single LP relaxation produces a fractional labeling.

According to the definition of continuous extension, f∗s are feasible solutions of con-
tinuous extension of the non-linear problem. Therefore the optimum of the linear pro-
gramming problem is not less than the optimum of the continuous extension of the
nonlinear problem. On the other hand, it is easy to construct a feasible solution of LP
that achieves the minimum of the continuous extension of the nonlinear problem. The
property follows.

In practice, the cost function c(s, j) is usually highly non-convex for each site s. In
this situation, the proposed linear programming model approximates the original non-
convex problem by a convex programming problem.

Property 2: For general cost function c(s, j), if Bs = Ls, ∀s ∈ S, the linear program-
ming formulation solves the continuous extension of the reformulated discrete labeling
problem, with c(s, j) replaced by its lower convex hull for each site s.

Its proof is similar to Property 1, by replacing c(s, j) in the non-linear function with
its lower convex hull. Fig. 1(a) illustrates the convexification effect introduced by LP
relaxation.

Property 3: For general cost function c(s, j), the most compact basis set Bs contains
the vertex coordinates of the lower convex hull of c(s, j), ∀s ∈ S.

By Property 3, there is no need to include all the labeling assignment costs in the
optimization: we only need to include those corresponding to the basis labels. This is
one of the key steps to speed up the algorithm.

Property 4: If the lower convex hull of the cost function c(s, j) is strictly convex,
nonzero weighting basis labels must be “adjacent”.

Proof: Here “adjacent” means the convex hull of the nonzero weighting basis labels
cannot contain other basis labels. Assume this does not hold for a site s, and the nonzero
weighting basis labels are j

k
, k = 1..K . Then, there is a basis label jr located inside the

convex hull of jk, k = 1..K . Thus, ∃αk such that jr =
∑K

k=1 αkjk and
∑K

k=1 αk=1,
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αk ≥ 0. According to Karush-Kuhn-Tucker Condition (KKTC), there exists λ1, λ2, λ3

and µj such that
c(s, j) + λ1 + λ2φ1(j) + λ3φ2(j)− µj = 0 and ξs,jµj = 0, µj ≥ 0, ∀j ∈Bs

Therefore we have,
c(s, jk) + λ1 + λ2φ1(jk) + λ3φ2(jk) = 0, k = 1..K

c(s, jr) + λ1 + λ2φ1(jr) + λ3φ2(jr) ≥ 0
On the other hand,

c(s, jr) + λ1 + λ2φ1(jr) + λ3φ2(jr)
= c(s,

∑K
k=1 αkjk) + λ1 + λ2φ1(

∑K
k=1 αkjk) + λ3φ2(

∑K
k=1 αkjk)

<
∑K

k=1 αkc(s, jk) + λ1 + λ2

∑K
k=1 αkφ1(jk) + λ3

∑K
k=1 αkφ2(jk) = 0

which contradicts the KKTC. The property follows.
After the convexification process, the original non-convex optimization problem

turns into a convex problem and an efficient linear programming method can be used
to yield a global optimal solution for the approximation problem. Note that, although
this is a convex problem, a standard local optimization scheme is found to work poorly
because of quantization noise and large flat areas in the convexified objective function.

Approximating the matching cost by its lower convex hull is also intuitively attrac-
tive since in the ideal case, the true matching will have the lowest matching cost and thus
the optimization becomes exact in this case. In real applications, several target points
may have equal matching cost and, even worse, some incorrect matching may have
lower costs. In this case, because of the convexification process, in a one-step relax-
ation, the resulting fractional labeling could be not exactly the true solution, as shown
in the Fig 1(b). In this simple image matching example, there are 2 sites in the source
image and we construct a simple 2-node graph template. There are 5 target points in
the target image. In the example, labels are the displacement vectors. We assume that a
white rectangle will match a white rectangle with zero cost. And the circles will match
with zero cost. Matching between different shape points has large matching cost. The
light gray rectangle is in fact the true target for the white one in the source image, but
the match cost is a very small positive number because of noisy measurement. By solv-
ing the LP relaxation problem, we get a fractional solution as illustrated in Fig 1(b)
that has zero cost for LP’s objective function but is not the true solution. Adjusting the
smoothing parameter will not help because it already achieves the minimal zero cost. A
traditional rounding scheme will try to round ξ into 0 and 1. Unfortunately, the round-
ing will drive the solution even farther from the true solution, in which the rectangle
template node will match one of the white points in the target image. Intuitively, we
can shrink the searching region for each site based on the current LP solution, and do
a further search by solving a new LP problem in the smaller trust region. In the follow-
ing section, we expand this idea and propose a successive convexification scheme to
improve the approximation iteratively.

2.3 Successive Convexification Linear Programming

Here we propose a successive convexification linear programming method to solve the
non-linear optimization problem, in which we construct linear programming recursively
based on the previous searching result and gradually shrink the matching trust region
systematically.
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Assume Bn
s to be the basis label set for site s at stage n linear programming. The

trust region Un
s of site s is determined by the previous relaxation solution fn−1

s =
(fn−1

s,1 , fn−1
s,2 ), and a trust region diameter dn. We defineQn

s = Ls∩Un
s . Bn

s is specified
by Bn

s = {the vertex coordinates of the lower convex hull of {c(s, j),∀j ∈ Qn
s }}, where

c(s, j) is the cost of assigning label j to site s.

Algorithm 1. Successive Convexification Linear Programming
1. Set n = 0; Set initial diameter = d0;
2. FOREACH(s ∈ S)
3. { Calculate the cost function {c(s, j), ∀j ∈ Q0

s};
4. Convexify {c(s, j)} and find basis B0

s ; }
5. Construct and solve LP0;
6. WHILE ( n ≤ N and dn ≥ 1)
7. { n←n+1;
8. dn = dn−1 − δn;
9. FOREACH(s ∈ S)
10. { IF (Qn

s is empty) {Qn
s = Qn−1

s ;Un
s = Un−1

s ; }
11. ELSE update Un

s ,Qn
s ;

12. Reconvexify {c(s, j)} and relocate basis Bn
s ; }

13. Construct and solve LPn; }
14. Output f∗

s , ∀s ∈ S;

Notice that the relaxed LP gives the lower bound of the original problem; It is easy to
verify that the necessary condition for successive LP approaching the global minimum
is LPn ≤ E∗, n = 0..N, where E∗ is the global minimum of the non-linear problem.
Since the global minimum of the function is unknown, we estimate an upper bound
E+of E∗ in the iterative process. The configuration of labels that achieves the upper
bound E+ is composed of anchors — an anchor is defined as the control point of the
trust region for the next iteration. We keep the anchor in the new trust region for each site
and shrink the boundary inwards. If the anchor is on the boundary of the previous trust
region, other boundaries are moved inwards. A simple scheme is to select anchors as the
solution of the previous LP, rs = f (n−1)

s . Unfortunately, in the worse case, this simple
scheme has solution whose objective function is arbitrarily far from the optimum. In
fact, the fractional solution could be far away from the discrete label site. To solve the
problem, we present a deterministic rounding process by checking the discrete labels
and selecting the anchor that minimizes the non-linear objective function, given the
configuration of fractional matching labels defined by the solution of the current stage.
This step is similar to a single iteration of an ICM algorithm. In this step, we project a
fractional solution into the discrete space. We call the new rounding selection scheme a
consistent rounding process. Except for LP1, we further require that new anchors have
energy not greater than the previous estimation: the anchors are updated only if new
ones have smaller energy. The objective function for LPn must be less than or equal
to E+. This iterative procedure guarantees that the objective function of the proposed
multi-step scheme is at least as good as a single relaxation scheme. In the following
example, we use a simple scalar labeling problem to illustrate the solution procedure.
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Fig. 2. Successive convexification LP

Example 1. (A scalar labeling problem): Assume there are two sites {1, 2} and for each
site the label set is {1..7}. The objective function is min{ρ1,ρ2} c(1, ρ1) + c(2, ρ2) +
λ|ρ1 − ρ2|. In this example we assume that {c(1, j)} ={ 1.1 6 2 7 5 3 4 }, {c(2, j)} =
{ 5 5 5 1 5 1 5} and λ = 0.5.

Based on the proposed scheme, the problem is solved by the sequential LPs: LP0,
LP1 and LP2. In LP0 the trust regions of sites 1 and 2 are both [1, 7]. Constructing
LP0 based on the proposed scheme corresponds to solving an approximated problem in
which {c(1, j)} and {c(2, j)} are replaced by their lower convex hulls respectively (see
Fig. 2). Step LP0 uses basis labels {1,6,7} for site 1 and basis labels {1, 4, 6, 7} for
site 2. LP0 finds solution ξ1,1 = 0.4, ξ1,6 = 0.6, ξ1,7 = 0, ρ1 = (0.4∗1+0.6∗6) = 4;
and ξ2,4 = 1, ξ2,1 = ξ2,6 = ξ2,7 = 0, ρ2 = 4. Based on the proposed rules for anchor
selection, we fix site 2 with fractional label 4 obtained by solving LP0, and search the
best label for site 1 in the region [1,7] using the non-linear objective function; we get
the anchor 3 for site 1. Using similar method, we fix site 1 with its fractional label 4 and
search the best label for site 2, and we get its anchor 4. At this stage, using anchor labels
we get E+ = c(1, 3) + c(2, 4) + 0.5 ∗ |3− 4| = 3.5. Further, the trust region of LP1 is
[2, 6] for site 1 and [2, 6] for site 2 by shrinking the previous trust region diameter by 2.
The solution of LP1 is ρ1 = 4 and ρ2 = 4. The anchor is 3 for site 1 and 4 for site 2
with E+ = 3.5. Based on LP1, LP2 has new trust region [3, 5]× [3, 5] and its solution
is ρ1 = 3 and ρ2 = 4. Since LP achieves the upper bound 3.5 in the trust region, there
is no need to further shrink the trust region and the iteration terminates. It is not difficult
to verify that the configuration ρ1 = 3, ρ2 = 4 achieves the global minimum. Fig. 2
illustrates the proposed successive convexification process method for this example.

Interestingly, for the above example ICM or even the graph cut scheme only finds
a local minimum if initial values are not correctly set. For ICM, if ρ2 is set to 6 and
the updating is from ρ1, the iteration will fall into a local minimum corresponding to
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ρ1 = 6 and ρ2 = 6. The GC scheme based on α-expansion will have the same problem
if the initial values of both ρ1 and ρ2 are set to 6.

A revised simplex method is used to solve the LP problem. Therefore, an estimate
of the average complexity of successive convexification linear programming is O(|S| ·
|Q|1/2 · (log |Q|+ log |S|)), where Q is the label set. Experiments also confirm that the
average complexity of the proposed optimization scheme increases more slowly with
the searching window size than previous methods such as the graph cut scheme, whose
average complexity is linear with respect to |Q|.

2.4 Model Generation

The basic idea of body gesture recognition is to match a human body gesture image
with different templates; The best matching template indicates the gesture and location
of the human object in the image. The problem is challenging because we do not have a
segmentation mask in the target image, and therefore we have to deal with strong back-
ground clutters. Another difficult problem is to make the algorithm resistant to different
clothing and other large appearance changes. For gesture recognition problems, the fea-
tures selected for the matching process must be insensitive to appearance changes of
human objects. The edge map contains all the shape information of an object, and at
the same time is not sensitive to color changes. Edge features have been widely applied
in Chamfer matching schemes [5]. We propose the use of small blocks, centered on the
edge pixels, of the distance transform of an image’s edge map as the matching feature.
A distance transform converts a binary edge map into its corresponding grayscale repre-
sentation, where the intensity of a pixel is proportional to its distance to the nearest edge
pixel. Denoting the square block of the distance transform of I’s edge map centered at
the edge pixel x as dx(I), the cost of matching is defined as

Cx,y =
1

∆2√σxσy
||dx(Is)− dy(It)||

where Is and It are the template and target images respectively; ||.|| is the cityblock
norm in this paper; σx and σy are the standard deviations of dx(Is) and dy(It) respec-
tively; ∆ is the size of the square block. The orientation information is now integrated
in the proposed feature. For instance, there is now a big difference for two features
on orthogonal edges. In this paper, the features are randomly selected on the edges of
the template. The neighboring relation N is defined by the edges of the graph gener-
ated by Delaunay triangulation of the feature points on the template. In this problem,
source set S contains the feature points on the template, and labels are the displacement
vectors of target points to each feature point on the template. Therefore, c(s, fs) in the
optimization problem equal Cs,fs+s.

2.5 Similarity Measures

After finding the matches of the feature points in the template with corresponding points
in the target image based on the proposed method, we need to further decide how similar
these two constellations of matched points are and whether the matching result corre-
sponds to the same event as in the exemplar. We use the following quantities to measure
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the difference between the template and the matching object. The first measure is D,
defined as the average of pairwise length changes from the template to the target. To
compensate for the global deformation, a global affine transform A is first estimated
based on the matching and then applied to the template points before calculating D.
D is further normalized with respect to the average edge length of the template. The
second measure is the average warped template matching cost M , which is defined as
the average absolute difference of the target image distance transform and the warped
reference image distance transform in the region of interest. The warping is based on
cubic spline. The total matching cost is simply defined as M + αD, where α has a
typical value from 0.1 to 0.5. Experiments show that only about 100 randomly selected
feature points are needed in calculating D and M .

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. An example where traditional methods fail. (a): Template image; (b): Target image; (c):
Edge map of template image; (d): Edge map of target image; (e): Template mesh; (f): Matching
result of the proposed scheme; (g): ICM matching result; (h): Graph cut matching result.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Binary to grayscale. (a, b): Template image and target image. (c): Template model showing
distance transform; (d): Matching result of proposed scheme; (e): Matching result by GC; (f):
Matching result by ICM. (g): Matching result by BP.
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Template 1 Template 2 Template 3 Template 4

(a) 0.0733 0.0918 (b) 0.1096 0.1172

(c) 0.0868 0.1221 (d) 0.0847 0.0889

(e) 0.0840 0.2990 (f) 0.0888 0.1110

(g) 0.0873 0.1092 (h) 0.1081 0.1440

(i) 0.0797 0.0863 (j) 0.1003 0.1171

(k) 0.1036 0.1038 (l) 0.1128 0.1182

(m) 0.0983 0.1060 (n) 0.0804 0.0993

(o) 0.0917 0.1011 (p) 0.0675 0.0928

Fig. 5. Testing images and their top two matches from four body gestures
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Template 0.0656 0.0658 0.0681 0.0730 0.0731

0.0887 0.0919 0.1223 0.1241 0.1332 0.1346

0.1361 0.1433 0.1441 0.1453 0.1503 0.1512
(a) Gesture recognition result with template 1

Template 0.0433 0.0473 0.0909 0.1036 0.1049

0.1068 0.1081 0.1106 0.1109 0.1110 0.1115

0.1138 0.1180 0.1218 0.1223 0.1259 0.1294
(b) Gesture recognition result with template 2

Template 0.0745 0.1308 0.1372 0.1376 0.1380

0.1381 0.1407 0.1421 0.1440 0.1451 0.1468

0.1418 0.1494 0.1535 0.1553 0.1553 0.1555
(c) Gesture recognition result with template 3

Fig. 6. Matching result for Yoga images. The first image in each subfigure is the template and the
rest are the top 17 candidate matching images. Numbers show the matching cost.
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Frame 0 Frame 40 Frame 80 Frame 120 Frame 160 Frame 200

Frame 240 Frame 280 Frame 320 Frame 360 Frame 400 Frame 440
(a) Sample frames from video 1

Template 0.065176 0.069108 0.071428 0.077256 0.078176

0.079321 0.079884 0.080592 0.083508 0.083684 0.083924
(b) Top 11 matches for video 1

Frame 0 Frame 80 Frame 160 Frame 240 Frame 320 Frame 400

Frame 480 Frame 560 Frame 640 Frame 720 Frame 800 Frame 880
(c) Sample frames from video 2

Template 0.148730 0.152855 0.153233 0.154401 0.155574

0.156224 0.157334 0.160047 0.160292 0.160323 0.160668
(d) Top 11 matches for video 2

Fig. 7. Matching human gestures using flexible toy object template
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3 Experimental Results

Fig. 3 shows the advantage of using our deformable matching scheme when we only
have one template available. We try to match the distance transform of the template
and target images. As shown in this example, greedy schemes such as ICM meet with
great difficulty since there are a lot of ambiguities in matching distance transformation
images. Comparing with the graph cut scheme, the proposed LP based method can solve
the problem more robustly. Fig. 4 shows a comparison result using synthetic binary
images. All the methods in the comparison use the same set of energy functions and
parameter settings. With a 2.66GHz Pentium IV Linux machine, each LP iteration takes
about 1 second for a problem with 100 nodes and 10000 target points. The typical
number of iterations is 3 to 4 for most problems.

Fig. 5 shows body gesture recognition results using two articulated objects. Four
body gestures are involved. A single template is generated for each gesture using the
first object. The region of the object is set for the template object and about 100 features
are randomly selected from the edge pixels automatically. Another object with differ-
ent appearance is used for testing in different background settings. Distance transform
images are used in matching to compensate for the appearance changes. A linear com-
bination of the deformation measure D and the matching error M are used to form a
matching score. We set the coefficient to be 0.1 for deformation D and unity for match-
ing error M . Top two match candidates and their matching cost are shown in each of
Figs. 5 (a) to (p). These experiments show that the proposed scheme can reliably match
the target in complex background settings.

In another experiment, we study the following retrieval problem: we use a template
image and retrieve the best match in an image data set. The data set is extracted from
a video sequence. In this experiment, there is only one human object in the image.
The search range is the whole target image. The template images and target images are
extracted from different sections of the video, which have a large number of different
body gestures and small number of similar body gestures. The character in the image
has different clothing and somewhat different size in the template and target image.
The test set contains 40 images with about 20 different gestures. Fig. 6 shows retrieval
results for 3 different gestures. The matcher is reliable and all the correct matches are
located in the first several best matches.

In Fig.7 we conducted experiments to test the performance of the proposed scheme
in matching objects with large appearance differences. We use a toy as the template
object and search for similar human body gestures in video sequences. Two sequences
are used in testing. The first one shown in Fig.7 has 500 frames and the other has
1000 frames. There are fewer than 10% of true targets in the video sequence. The first
sequence has a precision of 90% when the recall is 55%; Precision drops to 82% when
recall goes up to 100%. The second sequence has a precision of 92% when the recall is
50%; Precision drops to 81% when recall reaches 100%.

4 Conclusion

We propose a novel linear programming method using successive convexification which
is more efficient and effective than schemes such as the graph cut or belief propagation
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methods for the object matching problem where a large searching range is involved.
It can also solve problems for which other schemes fail. As well, we propose using
distance transformations of the edge maps to match the template and target images.
This representation facilitates matching some types of objects with large appearance
variations. Experiments show very promising results for human gesture detection in
cluttered environments. In future work, we will extend this method to dynamic gesture
and human activity recognition problems. The proposed scheme has the potential to be
directly applied to general object recognition problems.
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