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Abstract

Today’s person detection methods work best when peo-
ple are in common upright poses and appear reasonably
well spaced out in the image. However, in many real images,
that’s not what people do. People often appear quite close
to each other, e.g., with limbs linked or heads touching, and
their poses are often not pedestrian-like. We propose an
approach to detangle people in multi-person images. We
formulate the task as a region assembly problem. Starting
from a large set of overlapping regions from body part se-
mantic segmentation and generic object proposals, our op-
timization approach reassembles those pieces together into
multiple person instances. Since optimal region assembly
is a challenging combinatorial problem, we present a La-
grangian relaxation method to accelerate the lower bound
estimation, thereby enabling a fast branch and bound so-
lution for the global optimum. As output, our method pro-
duces a pixel-level map indicating both 1) the body part
labels (arm, leg, torso, and head), and 2) which parts be-
long to which individual person. Our results on challenging
datasets show our method is robust to clutter, occlusion, and
complex poses. It outperforms a variety of competing meth-
ods, including existing detector CRF methods and region
CNN approaches. In addition, we demonstrate its impact
on a proxemics recognition task, which demands a precise
representation of “whose body part is where” in crowded
images.

1. Introduction
Person detection has made tremendous progress over the

last decade [1]. Standard methods work best on pedestri-
ans: upright people in fairly simple, predictable poses, and
with minimal interaction and occlusion between the person
instances. Unfortunately, people in real images are not al-
ways so well-behaved! Plenty of in-the-wild images contain
multiple people close together, perhaps with their limbs in-
tertwined, faces close, bodies partially occluded, and in a
variety of poses. A number of computer vision applications

Figure 1. Our method finds human instances and the body part regions
(arms, legs, torso, and head). From left to right: input image, semantic
body part segmentation, person instance segmentation, final person indi-
viduation and part labeling.

demand the ability to parse such natural images into indi-
vidual people and their respective body parts—for exam-
ple, fashion [2], consumer photo analysis, predicting inter-
person interactions [31], or as a stepping stone towards ac-
tivity recognition, gesture, and pose analysis.

Current methods for segmenting person instances [9, 10,
4, 26, 27, 23, 24] take a top-down approach. First they use
a holistic person detector to localize each person, and then
they perform pixel level segmentation. Limited by the ef-
ficiency and performance of person detectors, such meth-
ods are slow when dealing with people at unknown scales
and orientations. Furthermore, they suffer when presented
with close or overlapping people, or people in unusual non-
pedestrian-like body poses [31].

We propose a new approach to detangle people and their
body parts in multi-person images. Reversing the traditional
top-down pipeline, we pose the task as a region assem-
bly problem and develop a bottom-up, purely region-based
approach. Given an input image containing an unknown
number of people, we first compute a pool of regions using
both body-part semantic segmentations and object propos-
als. Regions in this pool are often fragmented body parts
and often overlap. Despite their imperfections, our method
automatically selects the best subset and groups them into
human instances. To solve this difficult jigsaw puzzle, we
formulate an optimization problem in which parts are as-
signed to people, with constraints preferring small overlap,
correct sizes and spatial relationships between body parts,
and a low-energy association of body part regions to their
person instance. We show that this problem can be solved



efficiently using decomposition and a branch and bound
method.

Fig. 1 shows an example result from the proposed
method. Note that we not only estimate pixel-level body
part maps, but we also indicate “which part belongs to
whom”, even in a crowded scene with occluding people.

Experiments on three datasets show our method strongly
outperforms an array of existing approaches, including
bounding box detectors, CNN region proposals, and human
pose detectors. Furthermore, we show the advantage of the
proposed optimization scheme as compared to simpler in-
ference techniques. Finally, we demonstrate our person de-
tangler applied to proxemics recognition [31, 39, 41], where
fine-grained estimation of body parts and body part owners
is valuable to describe subtle human interactions (e.g., is he
holding her hand or her elbow?).

1.1. Related work
Most previous methods for human instance segmentation

require a person detector [11, 9, 10, 4, 6, 7, 8]. Multiple peo-
ple instance segmentation in TV shows has been studied in
[26, 27] using the detector CRF scheme, which combines a
person detector and a pixel-level CRF to achieve accurate
results. Sequential assignment is used to fit the human in-
stance masks to image data. From instance masks, detailed
human segmentation and body part regions are further esti-
mated using a CRF. Hypercolumn [46] is a CNN approach
that can be used for people parsing by classifying pixels in
the initial person detection bounding boxes.

Whereas existing methods largely take the strategy of
first detecting people and then segmenting their parts, we
propose a reversal of this conventional pipeline. In particu-
lar, we propose to start with a pool of regions that are seg-
ments or sub-regions of body parts on multiple people, and
then jointly assemble them into individuated person seg-
ments. The advantage of not depending on a holistic person
detector is not only because these detectors have high com-
putational complexity, but also because it is still a difficult
problem for person detectors to deal with complex human
poses, inter-person interactions, and large occlusions. Com-
pared to previous detector-based methods, our approach is
more efficient and gives better results.

Deep learning approaches have been studied in the joint
detection and segmentation scheme [22, 46], related to
RCNN [15], though the authors target generic PASCAL ob-
ject detection as opposed to person individuation and body
part labeling. Their method starts from object region pro-
posals such as [16, 17, 18], and each region is classified as
a target, such as a human subject, by using features on both
color images and binary image masks. Potentially, such a
method can be scale and rotation invariant and fast. The
challenge is how to propose complete whole object regions,
such as the whole mask of a person. This is often a diffi-
cult task due to the thin structure of human limbs, and arbi-

trary human poses. Our proposed method also uses region
proposals, but our method allows fragmented sub-regions
and can reassemble the broken regions back to human body
parts.

Part voting approaches have been intensively studied for
human or object instance segmentation. In [3], boundary
shape units vote for the centers of human subjects. In
[23, 24], the poselets vote for the centers of people in-
stances. The poselets that cast the votes are then identified
to obtain the object segmentation. In [25] the object bound-
ary is obtained by reversely finding the activation parts used
in the voting. Similar to the Hough Transform, such a vot-
ing approach is more suitable to targets that have relatively
fixed shape. Our proposed method finds the optimal part
assembly using articulation invariant constraints instead of
simply voting for the person center; it therefore can be used
to segment highly articulated human subjects.

Our method is also related to human region parsing, in
that we segment and label each person’s body part regions.
Human region parsing has been mostly studied for analyz-
ing body part regions of a single person [12, 13, 14, 5]. To
handle multiple people, in [4] a pedestrian detector is used
to find the bounding box of each single person. Finding
people with arbitrary poses using a bounding box detector is
still a hard problem, whereas our method naturally handles
multiple people with complex interactions and poses. Part
segmentation has recently been used to improve semantic
segmentation of animals [42], but the pairwise CRF method
cannot individuate multiple animal instances. In contrast,
our method is able to individuate tangled people with com-
plex poses.

Our work is also distantly related to human pose estima-
tion, which has been intensively studied on depth images
[35] and on color images using pictorial structure methods
[36, 37, 38] and CNNs [33, 43, 40, 44, 45]. However, un-
like our approach, human pose estimation methods usually
do not directly give the instance and body part region seg-
mentation. Deepercut [45] optimizes multiple people stick
figure representations using integer programming. Different
from our approach, Deepercut’s body part candidates are
body joint candidates from CNN and thus the method does
not infer region assembly and it does not deal with region
splitting and merging as our approach does. Our method
produces multiple human segmentations without extracting
human poses (stick figures).

In summary, the main contributions of this paper are: (1)
We tackle the new problem of multiple person instance in-
dividuation and body part segmentation from region assem-
bly. (2) We propose a novel linear formulation. (3) We
propose a Lagrangian relaxation method to speed up lower
bound estimation, with which we solve the optimization us-
ing fast branch and bound. Our experiments show that our
method is fast and effective, outperforming an array of alter-



native methods, and improving the state-of-the-art on prox-
emics recognition.

2. Method
We first overview our approach (Sec. 2.1), then present

the big picture formulation of region assembly as a graph
labeling problem (Sec. 2.2). We describe in detail how we
implement the components of that formulation (Sec. 2.3).
We introduce our efficient optimization approach (Sec. 2.4).
Finally, we discuss optimization details (Sec. 2.5).
2.1. Overview

Region proposals may already give body part regions of
separate human instances, or more likely they are partial
sub-regions of body parts. Many proposal regions do not
correspond to body part regions, or may be the union of two
individuals’ body parts. Our goal is to select a subset of re-
gions from these proposals and reassemble them to individ-
uate human instances and the associated body parts. Intu-
itively, a good configuration should have arm, leg, torso, and
head regions in proportional sizes, and part regions should
follow correct neighborhood relations.

We denote P be the set of overlapping regions or sub-
regions of different body parts. Let X be a vector of in-
tegers that indicate a specific region in P is assigned to a
person i from 1, . . . , N and N is the number of human in-
stance candidates determined by the algorithm during the
optimization (details below). The element of X is zero if
the corresponding region candidate does not belong to any
person and a natural number otherwise. We find the optimal
X by jointly optimizing over all potential people instances:

X ∗ = argminX {U(X )−R(X ) + S(X )} (1)
s.t. I(X ) ≤ 0, G(X ) ≤ 0,W (X ) ≤ 0.

Here U is the cost of assigning part regions to specific hu-
man instances. R is a term that encourages the selected
region candidates to cover corresponding body part regions.
S is a term that enforces the assembled body regions in each
detected human instance to have correct sizes. Apart from
these terms, we also introduce constraint I to limit the in-
tersection area between the selected regions, and G to con-
strain the color histogram between specific region pairs. We
also use constraint W to enforce the total body part area of
each instance person to be within an upper bound. All these
terms are defined in detail below.
2.2. Region assembly as a graph labeling problem

Fig. 2(a) illustrates the region assembly problem as
graph labeling. The nodes correspond to the regions or sub-
regions of different body parts. Head nodes and head-torso
nodes in Fig. 2(a) are also denoted as human instance nodes.
The head-torso nodes represent the head-torso region com-
binations. The binary edges correspond to possible region-
to-human instance assignments, and the hyper edges con-
strain the region coupling and assignment consistency. The
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Figure 2. (a) To optimize region assembly we find the node and edge
0-1 assignment which minimizes the objective in Eq. 1 while satisfying
different region constraints on body part assembly. (b) We decompose the
optimization into three optimizations in two stages. See text for details.

binary edges and nodes have weights. We essentially need
to find an optimal node-edge labeling to minimize the to-
tal weight. The optimization is combinatorial. It is hard to
solve due to the large number of edges, loopy structure and
high order constraints. Instead of directly solving the hard
problem, we decompose it into three optimizations on three
simpler graphs in two stages, as shown in Fig. 2(b).

The optimization finds the pairing of nodes in each aug-
mented bipartite graph in Fig. 2(b). The nodes on one side
are the regions of torsos, arms, or legs. The nodes on
the other side are the human instance representations using
head regions (stage one) or a head-torso region combina-
tion (stage two). Each part region (arm, leg, torso) node can
be used at most once, and each human instance node may
receive zero or multiple region matches. When selecting
multiple part nodes, we assemble corresponding body part
regions using “broken” region pieces. The nodes of part re-
gions are coupled by the size and exclusion constraints. The
optimizations for torso, arms, and legs in fact share the same
structure and therefore we can discuss them at the same time
as follows.

2.3. Detailed formulation
Now we flesh out how we instantiate the general formu-

lation presented above. We start from a semantic segmen-
tation map in which each pixel is classified as one of the
four part types (arms, legs, torso, and head) or the back-
ground. (“Background” = “not any person”; all person pix-
els are “foreground”.) The map is obtained by first com-
puting a stack of probability maps from a CNN (a modified
AlexNet) for each part at different scales. Max-pooling is
then applied to compute the body part soft semantic map.
We use graph cuts with alpha-expansion to generate the fi-
nal semantic segmentation map.

Overall, the goal is to have a large pool of part candidates
with high recall, but possibly low precision; that way, there
is a high chance that we can correctly use them to assemble
and separate multiple human instances. With this in mind,
regions and sub-regions of body parts (torso, arm, and legs)
are generated as follows. Apart from using the connected
components of body part regions from the CNN-derived se-
mantic segmentation map, we use region proposals from



[16] to “chop” possibly merged part regions into smaller
pieces by intersecting the region proposals with each part
region. The regions therefore include both whole body parts
and fragments of body parts.

Head regions are generated differently because the above
method may not always be able to separate close head re-
gions. The head regions are circular regions whose radii are
determined by the max-response scale at each head point;
the head points are detected by finding peaks in the soft se-
mantic head map using non-maximum suppression. While
our framework allows multiple head candidates with differ-
ent scales at the same point, in practice we find selecting
the single most likely head candidate at each point is suf-
ficient. The head candidate regions are further intersected
with the person foreground in the semantic map. The num-
ber of head candidates tells us the maximum number of peo-
ple in the image. The head detections automatically tell our
system the candidate people number in the image.

We introduce a binary variable xi,j , the binarized version
of X in Eq. 1, to label edges in Fig. 2(b): xi,j = 1 if region
i is selected to be part of person j, otherwise xi,j = 0. We
have the following constraint on x:

∑
j xi,j ≤ 1, which

means each region can only be assigned to at most one hu-
man instance. Each person instance may connect to mul-
tiple regions to handle the region splitting case. We also
introduce variable yj to indicate whether person/head can-
didate j is selected. y is the human instance node variable.
We enforce yj ≥ xi,j ,∀i. In stage two, the head-torso re-
gions come from the solution of stage one, and y is all one.
2.3.1 Region assignment costs U :
There is a cost ci,j to associate region i to person instance
candidate j, and a cost pj to select instance candidate j. The
total assignment cost is U(X ) =

∑
i,j ci,jxi,j + ξ

∑
j pjyj .

We optimize y only in stage one. In stage two, y is fixed
to be all ones and can be removed from the optimization.
pj equals one minus the head region’s peak probability on
the head map, so as to emphasize costs incurred on more
confident heads. ξ is a constant weight balancing the region
association cost against instance selection cost. The cost
ci,j aims to associate a person instance with regions that
“look like” part of the corresponding body parts based on
CNN soft semantic segmentation, and close to the anchor
part (head in stage one and torso in stage two).

2.3.2 Size term S and constraint W :
When composing a human instance’s body part, the total
area of the selected regions is limited by the body part’s
size:

∑
i aixi,j ≤ s2jb, where ai is the area of the region

i, sj is the scale of the head candidate j and b is largest
possible area of a body part for the reference person (150-
pixels tall). In stage one b is the max area of the torso, and
in stage two b limits the area of arms or legs. Apart from
the hard constraint, a soft one encourages the total area of a

region assembly to approach a target size of the correspond-
ing body part. We minimize |(

∑
i aixi,j/s

2
j ) − l|, which

can be converted to a linear form: min ej , s.t. − ej ≤
(
∑

i aixi,j/s
2
j ) − l ≤ ej , ej ≥ 0. Here l is the average

body part size of the reference person from different view
points. It corresponds to the torso in stage one and arms or
legs in stage two.

2.3.3 Exclusion and color consistency constraints I
and G:

We also prefer to select regions that are mostly non-
overlapping to form each body part region. Thus, we in-
troduce an exclusion constraint I to discourage overlap.
Let zi =

∑
j xi,j indicate whether region i is associated

to a human instance. To construct constraint I , we let
zm + zn ≤ 1, if qm,n > τ , where qm,n is the area in-
tersection to union ratio between region m and n and τ is a
constant.

Apart from intersection exclusion, we also prefer that the
color histograms should match if two regions are selected to
form the same body part. We thus enforce the constraint G
that xu,j + xv,j ≤ 1, if hu,v > ε, where hu,v is the L1-
distance between the normalized color histogram of region
u and v and ε is a constant threshold.

2.3.4 Max covering term R:
If we simply minimize the above terms, x, y will be all zero
since all the coefficients in the objective are non-negative.
We introduce an extra covering term to encourage the cho-
sen regions to cover the corresponding body part regions in
the semantic segmentation map. We maximize the total re-
gion size R =

∑
i rizi, where ri = ai/mti and ti is the

part type of candidate i, and mti is the total area of part ti
in the semantic map. R is proportional to the total region
size. This encourages region covering because we enforce
the regions to be mostly disjoint.

Combining the above terms, we have our optimization
objective:

min

{∑
i,j

ci,jxi,j + ξ
∑
j

pjyj + φ
∑
j

ej − π
∑
i

rizi

}
(2)

s.t.
∑
j

xi,j ≤ 1, zi =
∑
j

xi,j , yj ≥ xi,j , ∀i, j

zm + zn ≤ 1, if qm,n > τ, xu,j + xv,j ≤ 1, if hu,v > ε∑
i

aixi,j ≤ s2jb, −ej ≤ (
∑
i

aixi,j/s
2
j )− l ≤ ej , ej ≥ 0,

where φ and π are coefficients that serve to control the
weights of the size and cover terms. If we vectorize vari-
ables x, y, e and substitute z by x terms, the optimization
has the following format:

min
x,y,e
{gTx+ wT y + φ1T e} (3)

s.t. Ax ≤ 1, Bx+ Ce+Dy ≤ f, e ≥ 0, x, y are binary.



Here, the vector x includes the edge variables and the vector
y includes the human instance node variables. The dimen-
sion of x is the number of torso regions in stage one (or
number of arm or leg regions in stage two) times the num-
ber of candidate head regions. The dimension of y equals
the number of head regions. e is an auxiliary variable vec-
tor. g, w are constant coefficient vectors. φ is a constant. 1
is an all-one vector. Ax ≤ 1 is the assignment constraint
and Bx + Ce + Dy ≤ f represents the region coupling
constraints.
2.4. The lower bound

The direct linear relaxation of the integer program has
high complexity. With 1000 candidates and 2 human in-
stances, the simplex method takes around 4 seconds to com-
plete, while using the following speedup the time can be
reduced to 0.1 seconds using the same CPU.

We obtain the lower bound using the Lagrangian dual.
The size constraints and the exclusion constraints compli-
cate the problem. We move them into the objective func-
tion. To simplify notation we use the compact format of
Eq. 3:

max
ν

min
x,y,e
{gTx+ wT y + φ1T e+ νT (Bx+ Ce+Dy − f)}

s.t. Ax ≤ 1, 0 ≤ e ≤M, x, y are binary, ν ≥ 0, (4)

where ν is the Lagrangian multiplier vector. We intro-
duce an upper bound M for e to avoid unbounded solu-
tions. Since the extra term in the objective is non-positive
for all the feasible solutions of the original problem, the La-
grangian dual gives a lower bound.

The internal part of the dual is easy to solve because it
can be decomposed into three simple problems (no P2 in
stage two):

[P1]:min
x

(gT + νTB)x, s.t. Ax ≤ 1, x is binary. (5)

[P2]:min
y

(wT + νTD)y, s.t. y is binary. (6)

[P3]:min
e

(φ1T + νTC)e, s.t. 0 ≤ e ≤M. (7)

P1 can be solved by sequential assignment: in an assign-
ment graph such as Fig. 2(b), for each body part region
node, we check all the links to the human instance node
and find the most negative link and let the corresponding x
variable to be 1. If there is no negative link, no matching is
made and the corresponding x is 0. In P2 and P3, y is set to
0 or 1 and e is set to 0 or M according to the positiveness
of their coefficient.

Each set of Lagrangian multipliers corresponds to a
lower bound of the original problem. We are interested in
the largest lower bound. The bound with respect to the mul-
tipliers is a concave function and can be solved using the
subgradient method. The iteration alternates between solv-
ing for x, y, e and updating ν by ν ← max(0, ν + δ(Bx +
Ce+Dy−f)). Here δ is a small constant 10−6. The initial
values of these coefficients in ν are set to zero.
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Figure 3. (a): From left to right: input image, semantic segmentation
from CNN, and region assembly result of the proposed branch and bound
method (shading and boundary color show the instance segmentation). In
(a), note how the CNN output does not individuate parts into person in-
stances (center), whereas our output does (right). (b-d): Part selection
using Lagrangian dual for the torso, arms, and legs. For clarity, torso is not
shown in the stage two optimization. Color indicates instance group. (e-g)
show the energy of the Lagrangian dual approaches the solution (red line)
of the linear program relaxation.

For this problem, the Lagrangian relaxation bound is the
same as that of the linear program relaxation. This is due
to total unimodularity of the internal problem of the La-
grangian dual [28].

Example. Fig. 3 shows an example of using the La-
grangian relaxation to obtain the lower bound. The La-
grangian relaxation is applied to three optimizations in two
stages. As shown in Fig. 3(e-g), the result converges quickly
to the linear program relaxation result (the red line) in a few
hundred iterations. We see the relaxation assignment is in-
deed very similar to the globally optimal solution.

The complexity of finding the lower bound using the La-
grangian relaxation is O(n), where n is the number of re-
gion proposals times the number of human instance candi-
dates, and we use a fixed number of iterations in the subgra-
dient method. In contrast, the average complexity of a linear
relaxation [34] using the simplex method is O(n log(n)).
The above dual approach can be extended to estimate the
lower bound at each node of the search tree. With the lower
bounds, we use the branch and bound method to find the
global optimum quickly.

We set the thresholds τ = 0.2, ε = 0.5 and the weights
for the energy terms as ξ = 500, φ = 1, π = 2 × 105.
We fixed all parameters for all experiments after manually
inspecting a few examples. With more labeled data, we can
optimize these parameters for even better performance.

2.5. Branch and bound optimization
We use a branch and bound method to globally optimize

the three sub-problems. We branch on xwith the coefficient
that is the median of the undetermined x because it is likely
the most ambiguous. If an element of x is forced to be 0,
it is equivalent to removing the variable from the optimiza-
tion. If an element of x is forced to be 1, we can still remove
it from the optimization, but we have to change the corre-
sponding coefficients in the optimization. In either case, the
Lagrangian relaxation method can still be used to further



Figure 4. Sample results on the UCI and MPII datasets. Each result contains four columns: (1) the input images, (2) our input semantic segmentation body
part map, (3) final instance segmentation, and (4) final body part segmentation using the proposed method. We use both shading and different boundary
colors to show the segmentation. The same body parts have the same chromaticity (arm: green, leg: blue, torso: yellow, head: red) but have different
brightness if they belong to a different person. All figures best viewed on pdf.

obtain the lower bound in each branch. For each branch, if
the dual solution is primal feasible and satisfies complemen-
tary slackness, it is the global optimal solution. For each
node in the search tree, we obtain a primal feasible solution
using a simple greedy assignment method and update the
upper bound if the feasible solution has a smaller objective.
One branch is pruned, if the lower bound is greater than the
lowest upper bound or it is infeasible. We always branch
on the node with the lowest lower bound. Due to the tight
lower bound, the branch and bound terminates quickly. We
also use a relaxed tolerance gap to speed up the procedure.
The tolerance gap (u−l)/|u+l|, where u is the lowest upper
bound and l is lowest lower bound in active branches, can
be set to 20% and the method still gives good results. The
lower bound can be found efficiently using the Lagrangian
relaxation method in section 2.4. For most problems in the
experiments, where n averages around 500, the branch and
bound procedure terminates in a few seconds.

3. Experimental results
Overview: In the following, we compare our approach

to 1) simpler inference methods, to show the value added
over the initial CNN body part maps; 2) bounding box de-
tector methods; 3) CNN methods using region proposals; 4)
human pose detection based methods. Having established
our method’s accuracy, we then demonstrate its applicabil-
ity for a downstream task: proxemics recognition.
Datasets and evaluation metrics: We evaluate the pro-
posed method on 3 datasets: UCI [31], which contains 589
images, 100 images from the MPII dataset [32] that con-
tain multiple tangled people, and Buffy [27]. The images
include complex human poses, interactions, and occlusions
among subjects. The person scales and orientations are un-
known. These are the most comprehensive datasets avail-
able for locating people and parts. Nearly all test images

have touching entangled people, whereas in generic recog-
nition datasets like PASCAL or COCO, only 10% to 30%
of the images even have multiple people. We manually la-
bel the human instances and four part regions in UCI and
MPII datasets for ground truth evaluation only (not to train
the CNN). The pixel level part semantic segmentation CNN
is an AlexNet with the fully connected layers converted to
convolutional layers and trained on the LSP dataset [20].

We use the standard area intersection to union (IoU) ratio
against the ground truth labeling to quantify performance.
We report the IoU for the human instances and mean IoU
over all body part labels within each instance. To compute
forward (F) scores, we match each ground truth segment to
the best segmentation result. For the backward (B) scores,
the matching is the other way around. The forward score is
affected by missing detections and the backward score by
the false alarms.

Fig. 4 shows sample results of our method on UCI and
MPII.
Are our initial CNN body part maps enough? Would
a simpler inference method on top of the CNN maps be
sufficient? First, we stress that the CNN body part maps are
not enough by definition, as they do not individuate which
body part blobs go to which person. The person and part
segmentations merge when people are close. For example,
if their arms touch, that yields one connected component in
the CNN output; see Fig 4, second column in each set.

Our CNN semantic segmentation itself is reasonable. On
UCI and MPII, the average foreground pixel accuracy and
part pixel accuracy are 73.13% and 42.41% respectively.
However, this does not easily transfer to a good human in-
stance segmentation. To confirm this quantitatively, we test
1) a baseline that returns connected components in the CNN
map for the body part labels (Connected), and 2) a base-



Figure 5. Top: Comparison with person segmentation using DPM [30]
and Poselet (PSLT) [23] detectors combined with GrabCut (C) [29], and
Bottom: object proposal methods (selective search (SS) [17], object inde-
pendent proposal (OIP) [16], and MCG [18]) combined with an RCNN (R)
person detector [15] (Bottom). For each set, our results are shown in the
last row.

Figure 6. Comparison with methods that use human pose detectors [21,
43]. Our method’s results are in column 2 (instance segmentation) and 3
(part segmentation). Column 4 shows results of [21] and column 5 shows
results of [43]. Here we show the pose masks before CRF refinement.

line that greedily finds the grouping of each person sequen-
tially (Greedy). For the latter, after the lowest cost group
is found, the regions in that group are removed and we pro-
ceed to the next one until all the head regions are exhausted.
Note that naive exhaustive search is extremely slow due to
the huge search space.

Table 1 shows the results. Our full method’s strong re-
sults relative to both these baselines reveals the role of our
region assembly optimization. Our efficient global opti-
mization is necessary.
Comparison with bounding box detector methods: One
widely used method (e.g., [9, 10, 4, 23]) to extract human
instances is to first detect people in a set of bounding boxes,
and then obtain pixel-level segmentation. To test such a

baseline, we use a deformable part model (DPM) person
detector [30] and poselet (Poselet) person detector [23], and
refine the segmentation with GrabCut [29]. We adjust the
threshold of the person detectors to the lower side so that
they can detect more people instances. We also adjust the
parameters of GrabCut to achieve the best performance.

As shown in Fig. 5 (top), when the people have com-
plex poses, interactions, and occlusions, the bounding boxes
from person detectors are not accurate. It is a non-trivial
task for a pixel-level segmentation method to correct such
errors without manual interaction. Indeed, our method gives
consistently superior results to the detector based approach
(see Table 1 DPM and Poselet).
Comparison with CNN object detectors using region
proposals: Another method for human instance segmen-
tation is first generating many region proposals and then us-
ing a classifier to extract true human instances, e.g. [22].
RCNN [15] can also be modified to achieve such a func-
tion. To compare this idea to our method, we test three
kinds of region generation methods: selective search [17],
MCG [18], and object-independent proposals [16]. Each
rectangle image patch that encloses a region proposal is then
sent to RCNN to determine the probability of the image
patch containing a human instance. For fair comparison,
apart from the original dataset for training, we also include
the LSP images [20] in the refinement, which improves the
baseline’s human classification result.

Fig. 5 (bottom) shows sample results. In images with
tangled people instances, region proposals often have a hard
time to obtain full human segmentations, because the hu-
man structures are not directly used in these region proposal
methods. Table 1 shows the quantitative comparison. Our
method gives better results.
Comparison with methods using human pose detectors:
Next, we compare our approach to two stick figure pose de-
tectors (postprocessed to provide segmentations). The first
uses a flexible stick figure person detector [26]; the second
is based on CNNs for part detection [43].

Human instance segmentation scores are not reported
in [26]; the body part IoU scores are based on different
body part region definitions from ours and the code [26]
is not publicly available. Thus we compare with the up-
per bound performance of the N-best poses [21] that [26]
uses for human segmentation. We follow [26] to prune the
N-best poses to remove very close estimates while main-
taining the variety; a few thousand candidate poses are ex-
tracted. These poses are then refined to person masks fol-
lowing [26]. Instead of selecting the best candidates using
the energy as in [26], we directly find candidates that max-
imize the IoU ratio score using ground truth. We also spec-
ify the order of the matching when computing the forward
score so that occlusion can be counted away. The score is
thus an upper bound of the baseline.



Ours Connected Greedy DPM Poselet R-I R-II R-III NBest CNN-D

UCI F 63.02 41.62 46.88 57.64 53.50 56.04 54.01 36.32 61.81 48.58
B 63.45 29.16 45.91 55.59 51.72 47.10 41.47 33.47 57.48 48.96

MPII F 57.48 30.88 40.15 42.21 40.00 56.04 54.01 36.32 47.74 38.24
B 57.15 18.85 39.88 47.91 48.43 47.10 41.47 33.47 48.66 45.48

Ours C G NB CD

UCI F 38.39 24.75 27.29 37.98 26.49
B 38.56 18.43 32.30 31.08 26.75

MPII F 35.48 20.26 24.25 28.71 22.27
B 35.47 12.54 29.80 29.16 28.91

Table 1. Average person instance (Left table) and part (right table) IoU ratio comparison (%) for the UCI and MPII dataset. In the left table, notations
include Connected: Connected component method. R-I: RCNN+OIP, R-II: RCNN+MCG, R-III: RCNN+SelectiveSearch, CNN-D: CNN pose detector [43].
F: forward score. B: backward score. In part IoU table: Connected component is denoted as C, Greedy method as G, Nbest as NB and CNN-D as CD.

The CNN pose detector [43] baseline (CNN-D) is de-
signed to detect a single person stick figure. To make it
generalize to our multi-person images, we use DPM [30] to
detect candidate bounding boxes and then apply the CNN
pose detector [43] to find poses in each bounding box. We
refine the stick figure detection to obtain instance segmen-
tation following [26]. As seen in Table 1, our method out-
performs both pose-based methods (NBest and CNN-D) on
UCI and MPII overall.

Fig. 6 shows samples of raw masks whose refinement
best fits the ground truth regions. Our method is more ro-
bust when handling occlusion and complex people interac-
tions than traditional stick figure pose detectors. Apart from
the instance segmentation scores, our method also gives bet-
ter part segmentation scores than the pose detector methods
(see Table 1).
Comparison to state-of-the-art in person individuation:
We compare to [27], a method specifically aimed at human
individuation that represents the state of the art, with our
method on all the images from the Buffy dataset episode 4,
5, 6. Our average forward and backward scores are 68.22%
and 69.66%, which are higher than the average score of
62.4% reported in [27]. Note that [27] is trained on the
Buffy dataset but ours is not. We also compare our people
parsing method with the hypercolumn method [46] on the
articulated object categories in PASCAL VOC. Our person
body part APr at 0.5 is 0.312, which is higher than the hy-
percolumn approach which has a 0.285 APr at 0.5.

The detector CRF approach [26, 27] also has higher com-
plexity than our method, especially when we do not know
the people’s orientation. Finding a large set of pose candi-
dates in 10 orientations alone takes 3 minutes with a 3GHz
machine. Our method takes less than 10 seconds on region
assembly on each image. Our method is rotation invari-
ant. Our method may fail (Fig. 8) if gross errors happen on
semantic maps. With better pixel level semantic segmenta-
tion, the human instance detection and segmentation result
can be further improved.
Application for proxemics recognition: Finally, we
demonstrate the utility of our human region parsing for
proxemics recognition. Proxemics is the study of the spa-
tial separation individuals naturally maintain in social sit-
uations. The UCI dataset was created to study proxemics,
and is labeled for 6 classes: hand-hand (HH), hand-shoulder
(HS), shoulder-shoulder (SS), hand-torso (HT), hand-elbow
(HE) and elbow-shoulder (ES).

We use features that include the min and max distances

G:SS HE 
D:SS HE 

G:HH HT 
D:HH HT 

G:HH 

D:HH 

G:HS 
D:HS 

G:HH SS ES 
D:HH SS HT 

G:HT 

D:HH HT HE ES 

G:HS ES 
D:HS HT ES 

G:HS 
D:HT ES 

HH HS SS HT HE ES Mean(a) Mean(b)
Ours 59.7 52.0 53.9 33.2 36.1 36.2 45.2 47.58
[31] 37 29 50 61 38 34 42 38
[39] 31 20 40 20 11 12 22 23
[41] 41.2 35.4 62.2 NA 43.9 55.0 NA 47.54

Figure 7. Sample proxemics recognition. Row one: Our result (D)
matches the ground truth (G). Row two: Failure cases. The table shows
the average precision (%) in proxemics recognition. Mean(a) is the aver-
age of all classes. Mean(b) excludes class HT.

Figure 8. Sample failure cases.

between each pair of upper body part regions of a person
pair normalized by the average scale of the two subjects, the
normalized horizontal and vertical distance of heads and the
scale difference. The data for training and testing are uni-
formly split at random, following the setup in [31]. To learn
the 6 proxemics classes on top of these features, we use a
random forest classifier with 100 trees and unlimited tree
depth. We repeat the experiment 10 times and report the av-
erage accuracy. We do not use ground truth head locations.

Fig. 7 shows sample classifications and AP scores. Our
average AP score is higher than all the competing meth-
ods [31, 39, 41]. Our weakness vs. [31] on HT is likely be-
cause not only baby hugging but also other hand-on-torso
images are classified as HT. Compared to the prior pose de-
tectors, our method is more resistant to large occlusions,
non-pedestrian poses, and complex interactions.

4. Conclusion
We propose a novel method to segment human instances

and label their body parts using region assembly. The pro-
posed method is able to handle complex human interactions,
occlusion, difficult poses, and is rotation and scale invari-
ant. Our branch and bound method is fast and gives reliable
results. Our method’s results compare favorably to a wide
array of alternative methods, and we improve the state of art
on proxemics recognition.
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