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Abstract. A scale, rotation and articulation invariant method is pro-
posed to match human subjects in images. Different from the widely
used pictorial structure scheme, the proposed method directly matches
body parts to image regions which are obtained from object independent
proposals and successively merged superpixels. Body part region match-
ing is formulated as a graph matching problem. We globally assign a
body part candidate to each node on the model graph so that the over-
all configuration satisfies the spatial layout of a human body plan, part
regions have small overlap, and the part coverage follows proper area
ratios. The proposed graph model is non-tree and contains high order
hyper-edges. We propose an efficient method that finds global optimal
solution to the matching problem with a sequence of branch and bound
procedures. The experiments show that the proposed method is able to
handle arbitrary scale, rotation, articulation and match human subjects
in cluttered images.

Keywords: Human pose, scale and rotation invariant matching, global
optimization.

1 Introduction

Finding human subjects in cluttered images is a challenging task and it has many
important potential applications. In this paper, we match a human subject in
images and label the body part regions such as torso, arms and legs. The target
object may have different scales and rotations. Most current pictorial structure
approaches quantize the scale and rotation and optimize on the discrete cases.
As the scaling range increases, searching through a huge number of discrete cases
soon becomes impractical. The question is whether it is possible to efficiently
match a human target without enumerating the quantized scales and rotations.
In this paper, we address this problem and propose an efficient global optimiza-
tion method that is able to match human subjects in images with unknown scale
and rotation.

In contrast to the cardboard model that uses rectangle or polygon body
parts, we match region candidates in images so that the combination of these
regions forms a valid human body layout. The region candidates are from object
independent proposals [19] and successively merged superpixels [18]. The pro-
posed method assembles candidate regions and labels them as arm, leg and torso.
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Fig. 1. We label human part regions in images by matching a graph model to the
target human subject. The arm regions are red, legs are green and torsos are blue. The
proposed matching method is scale, rotation and articulation invariant.

Different from pictorial structure methods [9, 2], the proposed method does not
detect bar structures or obtain them from region candidates; instead it directly
optimizes the region assembly. By directly working on part region candidates,
our method is efficient and when properly constructed it is invariant to scale,
rotation and object articulation. Fig. 1 illustrates matching human part regions
using the proposed method.

Finding human poses in images has been intensively studied. If object fore-
ground segmentation is available, poses can be estimated using regression and
machine learning approaches [5]. In [22], object foreground proposals and latent
structured models are used to find human poses. Other top-down methods detect
poses by matching exemplars in databases [6–8]. These top-down pose estimation
methods work best when poses are in a small domain. If poses are unconstrained,
the performance of these methods degrades. Methods that reply on object fore-
ground segmentation are also limited by the quality of figure-ground separation,
which itself is a hard problem especially for segmenting human subjects.

Bottom-up pose estimation methods detect body parts and then assemble
them into a human-shaped object. Pictorial structure model is widely used,
in which arms, legs, torso and head are represented as rectangle or polygon
patches. The coupling body parts form a graph model. Different methods have
been proposed to optimize the body part assembly. Tree structure models [1–3,
17] allow efficient inference using dynamic programming. Non-tree models that
include more constraints among body parts have also been intensively studied
[10, 11, 4].

Part based methods also benefit from image segmentation. Object foreground
segmentation helps part detection and pose verification [9]. In [4], part assembly
is optimized as a max-cover to the object foreground. Even rough foreground
estimation is found useful to improve pose estimation [17]. In [13, 12], part can-
didates (the parallel bars) are extracted from superpixel boundaries and then
grouped into a stick figure. Superpixels have also been used in [14] to improve the
pictorial structure methods. Joint foreground segmentation and pose estimation
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for pedestrians have been studied in [16, 20]. In [21], object segmentation and
graph matching are optimized together to achieve reliable unconstrained pose
estimation.

The key obstacle for the pictorial structure methods is that it is hard to make
the model adapt to the unknown scale of target objects. The body part assembly
has to be optimized for each quantized scale and sometimes each rotation. This
would be a slow process if we have to enumerate many discrete cases. Fitting
rectangle structures to superpixel boundaries is able to make pose estimation
scale invariant [13]; however, this procedure may lose detection of body parts.
Apart from rectangle body parts, rectangle image patches (poselets) have also
been used to match human subjects [23]. Poselet is not scale and rotation in-
variant. In this paper, we propose a method that directly matches regions. The
body part regions are assembled so that the overall configuration fits a human
body model. Such a scheme is scale, rotation and articulation invariant when
properly constructed.

Grouping regions into a human shape is not a new concept. The jigsaw puz-
zle problem has been studied in [15], where the over-segmented superpixels are
grouped together to fit a human model. Since superpixels are not able to group
regions with different colors or textures, body parts with non-uniform appear-
ance are often split into multiple superpixels. A parse tree method is proposed
to merge superpixels in [15]. The parse tree may become huge and hard to pro-
cess. As a compromise, a sequential procedure is applied: legs are first detected
and then the torso is predicted from the leg detection using polygon matching.
In [24], accurate body part region labeling has been achieved for pedestrians.
This method replies on the shape priors of pedestrians and pedestrian detectors;
it is thus hard to extend to matching people with arbitrary poses. Grouping a
set of regions into a human shape and labeling the part regions is still an open
problem.

The contribution of this paper is that we propose a global optimization
method to match human body part regions. Our method groups superpixels
[18] and region proposals [19] so that their spatial correlations and region ratios
fit a human model. Our method is able to handle arbitrary human poses. It is
scale and rotation invariant and can be globally optimized using a fast branch
and bound approach.

2 Method

We treat human part matching as an assignment problem. We assign a candidate
region to each body part so that the configuration follows the model constraints.
Here the body part candidates are segments from successive superpixel merg-
ing and object independent region proposals. The body part model is shown in
Fig. 2. The corresponding graph model has five nodes that represent torso, arms
and legs. The hyper-edges linking the nodes indicate the torso-arms, torso-legs
and arms-legs constraints. These constraints enforce the spatial layout, over-
lapping area, symmetry, size ratio, and overall region coverage. Given a set of
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Fig. 2. Left: The 5-part body model. Right: The interaction of body parts in a graph.
The graph includes five nodes and three hyper-edges among them.

candidate regions, we optimize the body part assignment on the graph model:
each graph node selects a candidate region so that the following energy function
is minimized.

min
L,s

{U(L) + αD(L) + βP(L) + ηR(L) + γS(L) + µW(L, s)} (1)

s.t. L is a valid part assignment, and s is the scale estimation.

where U(.) is the unary assignment cost, which is small if part candidate regions
have similar shape to the corresponding part templates. D(.),P(.),R(.) and S(.)
are tri-part terms, which are small if the labeling of arms-torso combination
and the legs-torso combination satisfies specific constraints. D(.) quantifies the
distance between specific body parts. P(.) penalizes selecting region candidates
that are overlapping. R(.) enforces the relative sizes among body parts. S(L)
encourages selecting regions with symmetrical appearance for arms or legs. W(.)
is used to control the interaction among arms and legs, and encourages the
overall coverage of arms and legs to fit a target size, i.e., the arms and legs do
not overlap much and the overall area approaches a predicted value. During the
body part region labeling, we estimate the scale s simultaneously. The coefficients
of α, β, η, γ and µ control the weight among different terms. In this paper, we
set η = 0.1, α = γ = 0.01 and β = µ = 0.001. The energy function is invariant
to the scale, rotation and object articulation. Due to the loopy structure and
high order terms, finding optimal body part region assignment is a challenging
problem. In the following, we propose an efficient global optimal solution to this
problem.

2.1 Finding Body Part Candidates

Before optimizing the body part configuration, we first find candidate regions
for each body part. Different from the approach in [15], we do not merge small
regions during the optimization, instead we select parts from a large set of can-
didate regions to form a human body assembly. The proposed method assumes
that “correct” body part segments are in the candidate set. It is not necessary
that separate arms or legs are detected; we allow merging of arms or legs into a
single region. At first sight, this setting seems limited. However, we can almost
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Fig. 3. The constraints on body parts and their notations.

always obtain roughly correct body part segments from object independent re-
gion proposals and progressively merged superpixels. Object independent region
proposals [19] provide thousands of region candidates in an image by segmen-
tation with randomly selected seed points and region pruning by object priors.
This method works well to identify part regions on a human subject even when
they are composed of sub-regions with different appearance. To further improve
the chance of obtaining parts such as arms or legs, we also include candidate re-
gions generated by progressively merging over-segmented superpixels. The merg-
ing process starts from fine superpixels [18] and then successively merges two
neighboring superpixels with the most similar color histogram and the weak-
est boundary. With the object independent region proposals and successively
merged superpixels, there is a high chance that the true body part segments
are included in the candidate sets. Note that we do not require accurate part
candidates; our method is robust when handling region merging and inaccurate
candidates.

Given the region candidates, we solve a combinatorial search problem to
assemble regions so that the overall configuration resembles a human subject.
Naive exhaustive search is not feasible. We propose an efficient global optimiza-
tion method.

2.2 The Formulation

We formulate the optimization in this section. The basic idea is to construct the
optimization so that it can be linearized for fast solution.

We introduce some notations. We define an arm assignment tensor X and
a leg assignment tensor Y . The arm tensor X = [xi,j,k] whose element xi,j,k

indicates the assignment of region candidate i to arm one, region candidate j
to arm two and candidate k to torso. And, similarly we define the leg tensor
Y = [yi,j,k] to indicate the assignment of parts i, j, and k to leg one, leg two
and torso respectively. The elements of X and Y are indicator variables whose
values are either 0 or 1. In X or Y there is a single 1 element and every other
element is 0. We also define a torso assignment vector Z = [zi], where zi = 1 if
torso selects candidate i, and otherwise zi = 0.
The Unary Term: Each region candidate has a cost when assigned to a body
part. We measure the shape similarity of each candidate region to the template.
We use the inner distance [25] histogram to quantify the shape of a segment. The
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shape descriptor is the histogram of the distance between each pair of points in
a region. It can be efficiently computed using dynamic programming in O(n3)
time, where n is the number of points in the region. The histogram has 20 bins
in the range from 0 to the longest pairwise distance. We further normalize the
histogram by the number of point pairs. The normalized inner distance histogram
is scale and rotation invariant and roughly articulation invariant.

For each part p, e.g., arm, leg or torso, we have a set of exemplars {e1, e2, ...ekp
}

in which ei is the inner distance histogram of the ith template shape. The
cost of the assignment of a candidate whose shape descriptor is h is defined
as mini ||h− ei|| where ||.|| is the Euclidean distance. We build assignment cost
tensor U = [ui,j,k] and V = [vi,j,k], where ui,j,k = a(i)+a(j) and a(.) is the arm
assignment cost for a candidate, vi,j,k = l(i) + l(j) and l(.) is the leg assignment
cost. The torso assignment cost vector is denoted as T = [ti], where ti is the as-
signment cost of torso candidate i. In this paper, we keep the top 100 candidates
for arm, leg and torso based on their local matching costs. The overall unary
part assignment cost is

U = U �X + V � Y + Z � T, (2)

where � is the operator to sum the product of corresponding tensor elements.
Distance Term: A valid body configuration requires that the chosen arm can-
didates and leg candidates should be adjacent to the selected torso candidate.
Arms or legs also tend to be close to each other. The distance term is

D = Da �X + Dl � Y, (3)

where Da and Dl are distance tensors for arms and legs. Da = [di,j,k] where
di,j,k = di,j + di,k + dj,k, and we define di,j as the distance between the closest
points on the boundaries of arm candidate regions i and j, di,k and dj,k are
distances from arm candidates i and j to torso candidate k. Tensor Dl is similarly
defined for legs. The shortest distances between region contours can be efficiently
computed using the distance transform. The notations for the distance term are
illustrated in Fig. 3(a).
Overlap Term: Simply minimizing the boundary distances among part regions
does not guarantee a correct body part layout, since overlapping regions also
have small boundary distances. We minimize the overlap between arms, legs,
and torso:

P = Pa �X + Pl � Y, (4)

in which Pa = [pi,j,k] is an arm overlap tensor whose element pi,j,k = pi,j +pi,k +
pj,k; pi,j is the overlapping area between arm candidate regions i and j, pi,k and
pj,k are the overlapping areas of arm candidate regions i and j with torso region
k. The leg overlap tensor Pl is similarly defined to penalize the overlap between
legs, and between legs and torsos. The notations are illustrated in Fig. 3(b).
Size Ratio Term: A valid matching also should maintain correct size ratio
between parts. The size ratio is also important for distinguishing arms and legs.
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We enforce that the arm-torso ratio, leg-torso ratio, arm-arm ratio and leg-leg
ratio conform to the priors. The ratio term is

R = |Rat �X − rat|+ |Rlt � Y − rlt|+ |Raa �X − raa|+ |Rll � Y − rll|, (5)

where rat, raa, rlt and rll are the arm-torso, arm-arm, leg-torso and leg-leg region
ratio priors, and raa = rll = 1. Rat = [r(at)

i,j,k] is the arm-torso ratio tensor and

r
(at)
i,j,k = (bi + bj)/bk where bi and bj are the areas of arm candidate i and j,

and bk is the area of torso candidate k. The arm-arm ratio tensor Raa = [r(aa)
i,j,k],

where r
(aa)
i,j,k = bi/bj . The leg-torso ratio tensor Rlt and leg-leg ratio tensor Rll are

similarly defined. The notations are illustrated in Fig. 3(c). We use the L1 norm
here so that we can linearize the ratio term by introducing auxiliary variables.
Symmetry Term: The arms and legs are symmetrical parts that usually have
similar appearance. We minimize their histogram difference:

S = Sa �X + Sl � Y, (6)

where Sa and Sl are the symmetry tensors for arms and legs. We have Sa =
[si,j,k], si,j,k = ||Hi−Hj ||, where Hi and Hj are the normalized color histograms
of arm candidate regions i and j. Sl is similarly defined for the legs. When
minimizing the symmetry term, we prefer to select arms and legs with similar
appearance as shown in Fig. 3(d).
The Overall Coverage of Arms and Legs: The above terms do not explicitly
constrain the layout of arms and legs. Without further constraints, the legs and
arms may choose closely overlapping region candidates. Here we control their
overall region coverage so that they should occupy a preferred region size. To
this end, we find a set of “finer” segments so that all the region candidates
can be represented as the union of these small units. In this paper, we use
over-segmented superpixels as the unit regions. Let wn be a variable to indicate
whether unit region n is part of the object region and let W = [wn], n = 1..N ,
where N is the number of unit regions. Let a be the total area of the template
arm and leg regions and A be the vector of the areas of the unit regions, we
minimize

W = |sW �A− a| (7)

Subject to:

wn ≤ 1, wn ≤ Fn �X + Gn � Y, n = 1..N

wn ≥ xi,j,k, ∀f (n)
i,j,k = 1, n = 1..N

wn ≥ yi,j,k, ∀g(n)
i,j,k = 1, n = 1..N

where Fn and Gn are 0-1 arm and leg mask tensors for unit region n. We define
Fn = [f (n)

i,j,k] where f
(n)
i,j,k = 1 if arm candidate region i or region j covers unit

region n; Gn is defined similarly. In such a setting, if an arm or a leg region
covers unit region n, wn = 1 and otherwise wn = 0. Therefore, W � A equals
the total area of the region covered by the arms and legs. The coverage is scaled
by s for scale invariance. Notations are illustrated in Fig. 3(e).
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2.3 Linearization and Branch and Bound

Combining all the terms, we have a complete minimization problem. However,
this optimization is still hard to solve due to huge number of variables and con-
straints. We decompose the optimization into slave linear programs correspond-
ing to each torso candidate. Each of the sub-problems becomes much simpler
and can be quickly solved. For a 3D tensor M whose last dimension is k, we de-
note M (k) as the kth slice of tensor M . For instance, X(k) and Y (k) indicate the
arm and leg assignment given the torso selection k. We use such a notation for
all the matrices including U, V,D, P, S, R, F and G. We also estimate the scale
s by computing the ratio between the model torso area and the area of current
torso candidate k; the scale estimation is denoted as ŝk. The linear optimization
corresponding to torso region k is written as follows:

min{(U (k) + αD(k)
a + βP (k)

a + γS(k)
a )�X(k) + (V (k) + αD

(k)
l + (8)

βP
(k)
l + γS

(k)
l )� Y (k) + tk + η(qaa + qll + qat + qlt) + µ(w+ + w−)}

Subject to:

|X(k)| = 1, |Y (k)| = 1

− qaa ≤ R(k)
aa �X(k) − 1 ≤ qaa, −qll ≤ R

(k)
ll � Y (k) − 1 ≤ qll

− qat ≤ R
(k)
at �X(k) − rat ≤ qat, −qlt ≤ R

(k)
lt � Y (k) − rlt ≤ qlt

ŝkW �A− a = w+ − w−

wn ≤ 1, wn ≤ F (k)
n �X(k) + G(k)

n � Y (k), n = 1..N

wn ≥ xi,j,k, ∀f (n)
i,j,k = 1, n = 1..N

wn ≥ yi,j,k, ∀g(n)
i,j,k = 1, n = 1..N

All the variables are non-negative, X and Y are binary.

Here |X(k)| and |Y (k)| denote the summation of all the elements in a matrix. tk
is the unary cost of torso candidate k. The nonnegative auxiliary variables qaa,
qll, qat, qlt equal the absolute value terms |R(k)

aa � X(k) − 1|, |R(k)
ll � Y (k) − 1|,

|R(k)
at �X(k)− rat|, |R(k)

lt � Y (k)− rlt| and w+ + w− equals |ŝkW �A− a|, when
the objective function is minimized. There are K slave mixed integer linear
programs, each of which has K2 arm and leg pairwise variables and N unit
superpixel variables. In this paper K = 100 and and N is around 1000. We
notice that when the torso selection is fixed, the only coupling between the arms
and legs is the region overlapping constraints, which implies that each slave
program can be solved quite efficiently.

We use branch and bound method to obtain the integer solution to each
mixed integer slave program. Each slave program has the format min cu : Du =
d, where u includes the binary X and Y variables, and continuous w, q variables.
We compute the lower bound by solving the relaxed linear program in which
the binary constraints on X and Y variables are discarded. Any feasible integer
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solution provides an upper bound, which can be initialized using the local best
part matching.

New search tree branches are generated on the node with the smallest lower
bound. We introduce integer cuts on the most fractional variable (the variable
closest to 0.5). For the node with the lowest lower bound, a new cut ui = 0 or
ui = 1 where ui is either an X variable or a Y variable is included in the linear
program. We do not have to solve each linear program from scratch, since there
is only one more new constraint included in each branch and cut iteration. By
introducing slack variables, ui = 0 or equivalent ui ≤ 0 becomes ui + vi,0 = 0,
and ui = 1 or equivalent ui ≥ 1 becomes ui − vi,1 = 1 where vi,0 ≥ 0, vi,1 ≥ 0.
ui is a basic variable and its right hand side is a fractional number in the final
simplex tabular. For the ui = 0 branch, we subtract the original ui row from
ui + vi,0 = 0, and for the ui = 1 branch, we subtract ui − vi,1 = 1 from the ui

row. In either case, we turn vi,0 or vi,1 into a basic variable that is not feasible
because it has negative value on the right hand side. The dual-simplex method is
then applied in pivoting and usually it takes very few steps to regain the optimal
solution. We discard the branch whose linear program solution is infeasible or is
greater than the current upper bound. Most of the branches are pruned quickly.

We keep track of the upper bound Bu and lower bound Bl of the solution. Bl

is the lowest lower bound of all the active search tree nodes. Branch and bound
can be terminated prematurely when the tolerance gap δ = 2(Bu−Bl)

(Bu+Bl)
is reached,

and the objective is upper bounded by (δ+2)/(2−δ) times the global minimum.
In this paper, we terminate the iteration when δ ≤ 10−3. After solving each slave
program, the optimal solution of the original problem is the minimum of all the
slave programs.

3 Experiment

An Example: Fig. 4 shows the example of matching a human subject using the
proposed method. In this example, we generate about 1000 candidate regions.
The local matching costs for the torso, leg and arm are shown in Fig. 4(b), (c)
and (d), where brighter color indicates that a region is more likely to be a specific
body part. The unary part cost is computed by matching the normalized inner
distance histograms of the region candidates to those of the template shapes.
Local matching is noisy and as shown in Fig. 4(e) a simple greedy method
that selects the best match for each part does not give satisfactory result. The
proposed method constructs a mixed integer program corresponding to each
torso candidate. Here we keep the top 100 candidates for the torso, arm and
leg. Our optimization yields much better result. The top 5 matching results are
shown in Fig. 4 (f)-(j). The optimal matching accurately localizes the body parts
in this example. The proposed method is also efficient; the optimization takes
less than 10 seconds on a 2.8GHZ machine.
Proposal Regions and Object Foreground Segmentation: The region
candidates from the object independent proposals and successively merged su-
perpixels are not always able to give the overall human subject foreground. The
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. A matching example using the proposed method. (a) Input image. (b), (c) and
(d) show the local matching costs of the candidate regions to the torso, leg and arm
templates (the brighter a segment, the more likely it is a corresponding body part).
(f)-(j) show the top 5 matching results using the proposed method. (red, green and
blue indicate arm, leg and torso regions respectively).

Fig. 5. Object foreground is not always in the region candidates. The odd number
images show the closest region candidates to the object foreground. The proposed
method uses smaller part candidates and is able to match the target reliably, as shown
in the even number images.

sample test images in Fig. 5 are from the 305-image human pose dataset [2]. To
make the matching problem more general, we resize the height of each image to
480 pixels so that the human subjects have different scales, and we rotate each
image by 90 degrees. The best overall body segmentation from region candidates
can be quite far from the ground truth as shown in the odd number images in
Fig. 5. The proposed method is able to localize the target by using smaller part
regions which are much easier to detect as shown in the even number images in
Fig. 5.
Comparison with Competing Methods on Pose Dataset: We further
compare the proposed method with competing methods. We first compare the
proposed method with a greedy method that assigns the lowest cost candidate to
the corresponding body part. The comparison is on the 305-image human pose
dataset [2]. The images are scaled so that the height is 480 pixels. The scale
factor is not determined due to a variety of image sizes in the dataset. Without
loosing generality, we rotate all the images by 90 degrees and we assume that
all the testing methods do not know the rotation angle. Due to the noisy local
matching costs and lack of constraints among body parts, the simple greedy
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Fig. 6. Sample matching results of the proposed method (row 1), greedy method (row
2), Hough Transform based deformable matching (row 3), a recent people detector [2]
(row 4) and 10-part pictorial structure method with strong part detector [3] (row 5).

approach gives poor results. Fig. 6 row 1 shows sample results of the proposed
method, and Fig. 6 row 2 shows the matching results of the greedy method. The
proposed method yields much better results. The quantitative comparison on all
the images in the dataset is shown in Fig. 7. We define the matching score for
a part as |T ∩ G|/|T ∪ G|, where T is the target part region, G is the ground
truth region of the corresponding part, and |.| computes the area of a region. In
this paper, the ground truth regions are obtained from the ground truth joint
labeling and by fitting a bar with suitable width to each body part segment. We
compute the matching scores for the torso, arms and legs. The matching score
is in [0, 1] and the higher the matching score the better the matching; a perfect
matching has the score of 1. The proposed method has much higher matching
scores than the greedy method.

We compare the proposed method with a Hough Transform based method.
In this method, we use a star structure model constrained by the global scale and
rotation. The whole model is thus non-tree. The energy function is the linear
combination of the unary matching cost, the pairwise matching cost, and the
global scale and rotation consistency cost. The pairwise cost enforces the vector
from the center of one part to the center of its neighbor part to conform to the
model under some unknown rotation and scaling, and it also enforces that the
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This paper Greedy DP Tree-I [2] Tree-II [3]

Torso 0.4612 0.0979 0.1240 0.1058 0.2025

Leg 0.3205 0.0865 0.0788 0.1444 0.1954

Arm 0.1159 0.0728 0.0497 0.0764 0.1208

Fig. 7. Comparison with competing methods on the 305-image pose dataset [2]. Row 1
shows matching score distributions for torso, leg and arm. Row 2 gives average matching
scores of different methods. Higher scores indicate better results.

area ratio of the part pairs follows the model. By quantizing scales and rotations,
the optimization of the deformable matching turns into a sequence of dynamic
programming on each scale and rotation. This matching method is essentially the
extended Hough Transform in which the torso position is voted from all the part
candidates. The final result is the matching with the lowest energy. We choose
a stretch-out pose as the model spatial layout. As shown in Fig. 6 the dynamic
programming (DP) approach gives results worse than the proposed method. The
average matching scores and the matching score distributions shown in Fig. 7
confirm the advantage of the proposed method. The DP matching method is not
able to handle large object articulations and therefore yields poor results for this
dataset.

We compare the proposed method with a recent human detector [2] and a
pictorial structure method using strong part detectors [3]. The method in [2] is
not rotation invariant. We thus rotate each input image from 0 to 360 degrees
with 24 steps, and we select the result with the best matching score. Fig. 6 row
4 shows sample matching results of the people detector. The proposed method
greatly improves the result. Generating the foreground part segmentation by
connecting joint detections of the pictorial structure method [2] and thicken-
ing the lines, we can use the region ratio metric to quantitatively measure the
matching performance. The ratio of line thickening uses the same scheme as the
one in ground truth region generation, i.e., a perfect matching would give a score
of 1 for each part. Fig. 7 compares the matching scores between the proposed
method and [2]. The proposed method has much better performance. Another
pictorial structure method [3] that uses strong local part detectors is further
compared with the proposed method. This method operates on discrete scales
from 1 to 5 with 10 steps and 24 rotation angles. The pictorial structure method
takes about 20 minutes to process each image, while the proposed method takes
about 10 seconds in the optimization (the candidate region generation takes
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Fig. 8. Sample results of the proposed methods on the human pose dataset [2]. Arm
regions are red, legs are green and torsos are blue. The test images are scaled from 1
to 5 and rotated by 90 degrees. The results are rotated back to the normal position
and rescaled.

about 60 seconds per image). The comparison is shown in Fig. 6 and Fig. 7. The
proposed method has much higher detection scores for the torso and legs than
[3] and the arm detection score is comparable with [3]. More sample results of
the proposed methods are shown in Fig. 8.

4 Conclusion

We propose an efficient method to localize human subject in images by matching
body part region proposals. The proposed linearization scheme and branch and
bound approach are able to give global optimal result efficiently. The proposed
method is scale, rotation and articulation invariant. It has a clear advantage
over competing methods when the target human subject has unknown scale and
rotation. The proposed method will be useful for many different applications
including human detection, tracking and action recognition.
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