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Abstract

A novel method is proposed for matching articulated ob-
jects in cluttered videos. The method needs only a single ex-
emplar image of the target object. Instead of using a small
set of large parts to represent an articulated object, the pro-
posed model uses hundreds of small units to represent walks
along paths of pixels between key points on an articulated
object. Matching directly on dense pixels is key to achieving
reliable matching when motion blur occurs. The proposed
method fits the model to local image properties, conforms to
structure constraints, and remembers the steps taken along
a pixel path. The model formulation handles variations in
object scaling, rotation and articulation. Recovery of the
optimal pixel walks is posed as a special shortest path prob-
lem, which can be solved efficiently via dynamic program-
ming. Further speedup is achieved via factorization of the
path costs. An efficient method is proposed to find multiple
walks and simultaneously match multiple key points. Ex-
periments show that the proposed method is efficient and
reliable and can be used to match articulated objects in fast
motion videos with strong clutter and blurry imagery.

1. Introduction
We are interested in recovering key points of an object in

images, for example, localizing the hands and feet of a hu-
man subject. The positions of these key points can be used
in computer vision applications such as human computer in-
teraction, movement analysis and activity recognition. The
object(s) of interest may undergo significant deformations,
articulations, rotations and scale changes; this can make key
point localization challenging.
We propose a matching approach to recover the positions

of key points in images. We assume a single exemplar im-
age of the object is given and we will mark out pixel paths
between key points by placing a few strokes on the image.
Each stroke in the exemplar image defines the appearance
properties of pixels along a path between key points. Given
these paths in the exemplar image, we find the optimal paths
that match the key points in novel images. For example, in
Fig. 1, we use this approach to localize the head, hands and
feet of a gymnast in cluttered images.

Figure 1. We match a single exemplar to target objects in cluttered
images to find key points, e.g., head, hands and feet. The leftmost im-
age shows the exemplar annotated with strokes that define an appearance
model. This model is used to match target objects in the 2nd, 3rd and 4th
image that have undergone significant deformations, articulations, motion
blur, rotation, and scale changes.

The proposed method is based on identifying pixel paths
with similar appearance to paths in an exemplar image. We
model each path as a directed walk on pixels. Each step in a
walk is guided by the similarity of image local appearance
with the exemplar path, image local orientation, curvature,
and step size. Coupling multiple walks on an image, we are
able to model a complex articulated object and match multi-
ple key points on the target. Our model is rotation invariant
as well as articulation and scale resilient, i.e., it matches
paths with different lengths, orientations and articulations
in an efficient single-pass optimization. Our method is also
versatile. In the experiments we demonstrate detecting key
points on not only human subjects but also different de-
formable objects such as a fish, cloth, and a goose.
Our work is related to past work with Pictorial Struc-

tures [1, 2, 10, 11, 15] and with the Chains Model [4].
The Pictorial Structures (PS) model is commonly used for
detecting articulated objects and the Chains Model incor-
porates linear context into the detection. Differently from
these previous methods, the proposed method is able to ef-
ficiently optimize on a large number of local parts, and find
the optimal matching in a single pass for a huge set of tem-
plate patterns in foreshortening and scaling. Even though
PS methods and the Chains model can be extended to in-
clude large number of parts, optimization on these models
with each possible template configuration would be very
slow.
While our method uses “linear structures”, it has impor-

tant differences with the Chains model [4]. First the Chains
model requires a large set of training samples to learn an ac-
curate model for a specific problem, whereas our method re-
quires one exemplar and can handle arbitrary objects. Sec-
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ond, the Chains model formulation is not rotation invariant
and multiple scales must be tested if object sizes change.
While a reference part can be used to determine the scale
and rotation in the Chains model, it may be difficult to re-
liably detect the reference part in complex videos. In con-
trast, our method is rotation invariant and it just uses a single
pass optimization to handle a large range of scale changes.
The performance of previous methods also depends crit-

ically on the accuracy of the part detectors. If the human
subject is moving quickly, e.g., a sprinter running, then mo-
tion blur may occur at the limbs and/or head, and the cor-
responding body part detectors may not detect these body
parts reliably. In our method, we avoid costly part detection.
Instead, we use the appearance of the directed walks be-
tween key points on the template to match the correspond-
ing points in the target image. Matching the appearance of
the directed walk on image pixels tends to be more resilient
to motion blur than using body part detectors in a Pictorial
Structure or Chains model. This observation is verified in
our experiments with sports video sequences.
Our approach is also related to other methods of find-

ing linear structures in images, e.g., to find roads [5, 3] and
hands [7]. There is a key difference between finding a “walk
on pixels” in our formulation and fitting a line in [5, 3]. In
[5, 3] the stiffness of a curve is controlled by the curva-
ture computed from consecutive non-overlapping pixel po-
sitions. However, this does not work for our model since
a walk is allowed to revisit the same pixel multiple times–
an undesirable property for line fitting but a critical setting
in our method to simulate part foreshortening. At the same
time, we penalize the walk along a path according to the
duration of stay to discourage the walk shrinking to a single
point. These properties require that the walk has longterm
memory and forms a higher-order model, unlike [7] where
the move along a path only relates to the previous state. In
this paper, we show that the more complex model can still
be solved efficiently by finding shortest paths on a properly
constructed trellis.
Our method is also loosely related to randomwalk meth-

ods for image segmentation [13] and finding edges in clut-
tered images [6]. In these methods, the image cues used to
bias the walks are generally simple, e.g. intensity bound-
aries. Instead, in our work we perform walks in a more
guided setting, using richer information to control the qual-
ity of a walk, such as appearance, image gradients, and
higher-order smoothness.
The key contribution of this work is a scale and articu-

lation resilient, as well as rotation invariant, directed walk
method for matching key points on articulated objects. This
method efficiently searches over a huge number of template
configurations in a single pass. We also propose an effi-
cient method to find multiple walks. Experiments show that
the proposed method gives several times smaller average

matching error than competing methods in localizing key
points on articulated objects in cluttered sports sequences.

2. Method
Given an exemplar image, the user will specify multiple

pixel paths on the articulated object, where each path con-
nects two key points on the articulated structure. On target
images, we find similar paths by simulating a walk on im-
age pixels. The sequence of footsteps on the walk matches
the shape of the target structure.
After specifying a path on the exemplar image, i.e., a se-

quence of N pixels, we extract a local appearance feature
descriptor tn for each pixel and we create the appearance
template T = {t1, · · · , tN}. Our goal is to find the best
matching path in the target image. Once the best match-
ing path is found, then the corresponding end points of the
path on the target image are deemed the key points on the
articulated structure. For ease of exposition, we will first
discuss our technique for optimizing a single walk and then
we will propose an efficient method to find multiple walks
simultaneously.

2.1. The Cost of a Walk
The cost of a walk is determined by the similarity of the

pixel appearance on the path to the template walk (Ea), the
conformance of the walk direction to the image local dom-
inant direction (Ed), the smoothness of the walk (Et), and
how many times the walks stops (Es).
We define some notation. An N step walk w is defined

by {x1, · · · ,xN ,d1, · · · ,dN}, where at the nth step, xn

is the pixel xy coordinate in the target image and dn is a
unit vector representing the walk direction. We quantize the
direction dn into eight directions. The direction vector dn

is used to maintain direction persistence, i.e., if a step falls
at the same pixel as the previous one, then d remembers the
direction of the previous step that leads to the current pixel.
We also define the neighborhoodN (xn) of a pixel and each
step should be within a neighborhood of the previous step.
The cost of a walk with N steps is defined as:

E(x1, · · · ,xN ,d1, · · · ,dN ) = Ea + αEd + βEt + γEs

(1)
where α, β and γ are constant coefficients that determine
the weight among different terms.
By minimizing E, the matching path on the target has

four desirable properties. First, the appearance of the target
path should be similar to the template. Second, the path
should follow image local dominant orientations. Third, a
path should not contain excessive twists and turns, and it
should be laid out as straight as possible. Last, the sojourn
property enables the path to consecutively revisit the same
pixel thereby making the matched path visually shorter in
the target image. This path shortening property allows our
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method to be scale resilient and it is critical for handling
object scale changes as well as body part foreshortening.
In the following, we cast the above energy minimization

problem into finding shortest paths problem on a properly
constructed trellis. At the same time, we define each cost
term in Eq. (1).

2.2. Walk on a Trellis
We reduce the energy minimization problem to a special

shortest path problem on a trellis. We will construct a trellis
G with a set of start vertices S and end vertices T , so that
a path starting from a vertex in S and ending in a vertex in
T corresponds to a walk in the target image. Furthermore,
we require that the cost of the “dynamic” path on the trellis
should equal the cost of the correspondingwalk in the target
image.
Given a template path {t1, · · · , tN} and a target image

I with |I| pixels, we define the structure of the trellis G =
(V, E). LetQ be the set of quantized step direction vectors.
The vertex set V = {vi,j,n} includes |I|×|Q|×N vertices,
where i is the index for the pixels in the target image I , j is
the index for the quantized step direction vectors in Q, and
n is the position on the length N template path. We define
the set of edges as follows: there is an edge from vk,l,n−1

to vi,j,n if

Q(pi − pk) = ql, i �= k,ql ∈ Q and pi ∈ N (pk) (2)

where pi is the ith pixel coordinate in image I and ql is the
lth quantized unit direction vector in Q. Q(.) is a quanti-
zation function that maps a vector to the closest unit vector
in Q, i.e., Q(x) = argminq∈Q‖x/‖x‖ − q‖. In this pa-
per, |Q| = 8. This indicates that if the direction from one
point to another point conforms to the step direction vector
and the two points are in a neighborhood, we link the cor-
responding vertices in the trellis G. We also add the edges
(vk,l,n−1, vi,j,n) when i = k, j = l and this corresponds
to the case when the step stays at the same pixel. Note that
for stationary steps, the walk direction is kept the same be-
tween the linked vertices in two successive trellis layers.
This setting is important because it enforces the direction
persistence property. The set of start vertices S = {vi,j,1}
and end vertices T = {vi,j,N}.
To complete the trellis construction, we assign weights to

the vertices and edges based on the walk costs. The terms
Ea and Ed correspond to weights on vertices:

π(vi,j,n) = Ea + αEd, (3)
Ea = e(c(pi), tn), Ed = |qj · g(pi)|

where c(pi) is the feature vector at pixel location pi. And,
recall that tn is the template path feature vector at stage
n. e(.) is a distance function. In this paper, we use the
Euclidean distance function and simple pixel values as the

features; other features can also be used in the same for-
mulation. The dominant gradient orientation g(pi) at point
pi is set as the direction of the long axis of the local struc-
ture tensor. The coefficientα is defined in Eq. (1). The node
weight approaches zero if the walk follows template appear-
ances and image local orientations. The walk smoothness
Et corresponds to the weight on the edges

π(vk,l,n−1, vi,j,n) = βEt, Et = ‖qj − ql‖, (4)

if i �= k. Here we use the notation of π for both node weight
and edge weight. The edge weight quantifies the walk di-
rection changes, where β is the constant coefficient defined
in Eq. (1). Such a setting makes the walk mostly straight
but it allows a small number of turns.
For the trellis edges (vk,l,n−1, vi,j,n) corresponding to

stationary steps, we have i = k, j = l. For these edges, we
set the weight to a small constant γ, which is the coefficient
for Es in Eq. (1). A step thus may copy itself or stay at
the same location but it involves a constant penalty. The
penalty will accumulate if a walk stays at the same point
for too long and is encouraged to take some action. This is
equivalent to penalizing the total number of stationary steps,
using the term

Es =
N∑

n=2

I(‖xn − xn−1‖) (5)

where the indicator function I(x) = 1 if x = 0 and other-
wise I(x) = 0.
Based on the above settings, the directed walks in the

target image and the paths from S to T in the trellis form a
one-to-one mapping. And, the cost of each walk equals the
summation of the node weights and edge weights along the
corresponding path in the trellis.

2.3. Optimization
We compute the minimum cost of walks that end at each

image point by finding the “dynamic” shortest paths that
terminate at vertices in the last layer of G. Let cost Ci,j,n

be the min-cost of walks that terminate at node vi,j,n, then

Ci,j,n = min
∀(k,l)∈P

{π(vk,l,n−1, vi,j,n) + ui,j,k,l,n + Ck,l,n−1}

ui,j,k,l,n =

j
Dk,l,n−1 if i = k and j = l
π(vi,j,n) otherwise (6)

whereP = {(k, l)|vk,l,n−1 connects to vi,j,n} andDmem-
orizes the stationary step vertex costs. Similar to standard
dynamic programming for finding shortest paths on a trellis,
we keep a backward pointer to indicate the vertex selection
in the minimization. Apart fromC, the memorymapD also
needs to be updated. We set Di,j,n = Di,j,n−1 if the back-
wards pointer of vertex vi,j,n points to vi,j,n−1, and oth-
erwise Di,j,n = π(vi,j,n). This ensures that the matching
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Figure 2. Left: Backward links in min-convolution. Right: An example
that shows the walk direction slices. The black vertices are linked together
in the trellis.

algorithm can skip steps along the walk template if short-
ening the walk is needed, e.g., due to foreshortening. Note
that due to the penalty accumulation for stationary steps,
the walk will not shrink to a single point. To initialize, we
set Ci,j,1 = Di,j,1 = π(vi,j,1). This indicates that at these
starting points we prefer pixels that have similar appearance
to the template start point. The first steps in the walk have
equal chance to go in all possible directions.
Let’s take a closer look at the computation to obtain

Ci,j,n. The computation of π(vk,l,n−1, vi,j,n) takes two
different forms: if k �= i, π quantifies the walk direction
changes and if k = i and l = j, π equals a small constant.
We thus need to find all the neighborhood points that can
reach point i in one step and we add their costs with a pre-
defined edge link weight defined by the direction difference
penalty or a small stationary penalty. We then find the min-
imum of the weighted costs. Fig. 2 illustrates the range of
nodes involved in the computation for C, when a rectangu-
lar neighborhood is used. If we replace pixel index i with
its xy coordinates, the computation is a 3Dmin-convolution
[8]. The 3D min-convolution kernel in the xy dimensions
has the same size as the maximum step size and its third
dimension indicates the walk directions. In a simple im-
plementation, the min-convolution’s complexity is propor-
tional to the square of the radius of the pixel neighborhood.
In the following we show how to speed up the computation
by using the special structure of the problem.
We consider |Q| kernels, each of which corresponds to

one quantized direction j at a vertex vi,j,n. These kernels
are related to each other by rotations. We thus only need
to show that there is an efficient method to compute the
min-convolution for a canonical kernel. Here, we use the
canonical kernel that corresponds to a node with a left-to-
right step direction. We further restrict the turning angle
at each step to be at most 45 degrees. We now have a re-
duced pie-slice kernel. Fig. 3(a) shows an example kernel
that corresponds to a maximum step size of 10. Note that
the kernel does not include the point at the current step loca-
tion. To merge it with the min-convolution result, we need
one additional min operation. Fig. 3(b) shows the values of
the min-convolution kernel and Fig. 3(c) shows the corre-
spondence of the kernel elements to the rotation directions.
Since we have quantized the walk directions, the min-

convolution kernel has a piecewise constant structure. For
fast computation, we decompose the kernel into columns,
e.g., the columns of the kernel in Fig. 3(a). Each column
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Figure 3. (a) The top-down view of a min-convolution kernel with radius
10. (b) The values of the min-convolution kernel. (c) The direction in-
dices of the min-convolution kernel. The shading in (c) indicates the slice
indices.

Figure 4. Matching a gymnast using the exemplar in Fig. 1. Key point
matching results are color coded (yellow: head, cyan: hands, and green:
feet). The lines are optimal walk paths.

kernel corresponds to a set of walk direction slices and for
each slice the kernel values are constant due to quantiza-
tion. We perform the 1D min-convolution on each slice
and merge the result by a final minimization to obtain the
3D min-convolution result. By using [12], the 1D per-slice
min-convolution has a complexity independent of the 1D
kernel length. Therefore, the complexity of the proposed
method is O(r), where r is the radius of the pixel neighbor-
hood, in contrast to O(r2) when we directly compute the
3D min-convolution.

2.4. Finding Multiple Structures
We have proposed methods to match a single walk to

an articulated structure in an input image and determine
the end points. In many situations, we need to determine
the end points of multiple linear structures simultaneously.
For instance, finding two hands or two feet requires that we
jointly find two walks that have low costs and at the same
time tend to be apart from each other. Using the terminal
potential map of walk i = 1...k, we extract Mi candidate
walks using non-minimum suppression and then we select
k optimal walks from them, one from each of the Mi can-
didates. Due to the coupling among walks, whenMi and k
are large, exhaustive search soon becomes impractical. In
the following, we propose an efficient implicit enumeration
method to find k optimal walks.
Finding multiple walks can be formulated as an assign-

ment problem, in which we associate candidate walk fi to
structure i. Weminimize the overall local and coupling cost,

min
f
{

k∑

i=1

c(i, fi) +
∑

{i,j}∈B
h(fi, fj)}. (7)

The first term is the unary term, where c(i, fi) is the cost
of assigning walk fi to structure i. c(.) is obtained from
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the walk cost map C. The second term incorporates two
costs: the first is the distance between the start point of two
walks fi and fj if structure i and j should start from the
same point, and the second is a positive penalty if walks
fi and fj have a distance less than a threshold, otherwise
it is zero. B is the set of structure pairs. The pairwise
regularization term h(.) pushes structures apart and encour-
ages the selection of walks at different locations. Note that
the pairwise constraint is soft and therefore allows over-
lapping walks. Here, the distance between two walks is
defined as min(min d(e(fi),p(fj)), min d(e(fj),p(fi))),
where e(fi) is the end point of walk candidate fi and p(fj)
denotes all points on the walk of fj and d(.) is the distance
function. Thus, if one walk embeds in the other, their dis-
tance is zero. We convert the optimization into a linear one.
We introduce variable ξi,n to indicate whether structure

i maps to the candidate path n. ξi,n is 1, if the mapping is
true and 0 otherwise. If the cost of mapping structure i to n

is ci,n, the total local mapping cost is
∑k

i=1

∑Mi

n=1 ci,nξi,n,
where ci,n is obtained from c(.) in Eq. (7). Since each linear
structure on the target needs to map to a walk candidate, ξ
is constrained by

∑Mi

n=1 ξi,n = 1, ∀i.
To linearize the pairwise penalty term, we introduce an-

other variable ηi,j,n,m that is 1 if structure i selects candi-
date n and j selects m, and otherwise 0. η is thus a pair-
wise indicator variable. It is related to ξ by ηi,j,n,m ≥
ξi,n + ξj,m − 1, ηi,j,n,m ≤ ξi,n, ηi,j,n,m ≤ ξj,m, which en-
forces that ηi,j,n,m is 1 if both ξi,n and ξj,m are 1, and oth-
erwise 0. With η, the pairwise term in the objective function
can be written as

∑
i,j,m,n hi,j,n,mηi,j,n,m.Here, hi,j,n,m is

the penalty term and can be computed from h(.) in Eq. (7).
Combining the linear local cost term and the pairwise

cost term with the constraints on ξ and η, we obtain an exact
reformulation of the optimization.

min{∑i,n ci,nξi,n +
∑

i,j,n,m hi,j,n,mηi,j,n,m} (8)
s.t.

∑Mi

n=1 ξi,n = 1, ∀i, ηi,j,n,m ≥ ξi,n + ξj,m − 1,

ηi,j,n,m ≤ ξi,n, ηi,j,n,m ≤ ξj,m, ∀{i, j} ∈ B,

where ξ and η are binary. The binary integer linear program
is not submodular but we still would like to find its global
optimal solution. One option is Balas’ implicit enumera-
tion method [9]. However, Balas’ method is not the most
efficient due to the large number of η variables.
Using the special structure of the problem, we construct

a special branch and bound method for implicit enumera-
tion. The basic idea is to implicitly enumerate on only the
ξ variables or equivalently enumerate all the possible walk
assignments. Since we do not enumerate η variables, our
method is more efficient than the standard Balas’ method.
Algorithm 1 illustrates the special branch and bound algo-
rithm in a depth first search fashion.
In Algorithm 1, array w stores the chosen candidate for

each walk. At the beginning, index i is set to 0. The upper

Algorithm 1. Finding Multiple Walks
global input/output variable: walks, ubound
procedure multiwalk(w[1..k], k, i)
if i = k then

Update ubound and the optimal walks, return
else

lbound = cost of determined walk assignment
in w[1..i]

if lbound > ubound then
The branch is pruned away, return

else
Increment i by 1
foreach walk candidate j in 1..Mi do

w[i]← j
multiwalk(w, k, i)

end
end

end

bound ubound is initially computed using the lowest cost
candidate from each walk candidate set, and walks are ini-
tialized accordingly. The upper bound ubound and optimal
walks are updated when a leaf node is reached in the search
tree. The lower bound lbound at each search tree node is
computed using Eq. (8). We set ξ = 1 for walks that are de-
termined and ξ = 0 otherwise. We set ηi,j = xi&xj , where
& is the logical bitwise “and” operator. The cost of the par-
tial labeling is a lower bound because all the coefficients in
the cost function are non-negative, which means any way of
expanding the search tree from the current search tree node
to include more walk assignments will increase the energy.
The search terminates and backtracks if (1) the estimated
lower bound is greater than the current upper bound, or (2)
we complete k levels and reach the leaf node. The method
terminates when the search tree is exhausted. This method
is efficient even though the worst case complexity is expo-
nential; it terminates in a fraction of a second for k = 10
andN = 100 on a 2.8GHz machine.
Fig. 4 illustrates the proposed method matching a gym-

nast in a fast motion balance bar sequence. The exemplar
has two walk templates as shown in Fig. 1: One from head
to a foot and the other from head to a hand. Due to the very
cluttered background and similar foreground colors, simple
skin color matching is not able to find the target point. The
proposed method reliably finds the end points in spite of
scaling, rotation, articulation and strong motion blur.

3. Experiments
We applied our proposed method to detect key points on

a variety of deformable objects in video sequences. In each
video sequence, one video frame is chosen at random for
the user to define a template walk. Given this template, its
key points are then automatically detected in all the other
frames of the video sequence. As formulated in Section 2
our method is applied independently in each frame, i.e.,
there is no temporal model employed.
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Figure 5. Matching objects using the proposed method (row 1, 3, 5) and
deformable matching [14] (row 2, 4, 6). The detection rates of this paper
for the 570-frame sock, 193-frame goose and 930-frame fish sequences
are 98%, 96% and 94% respectively, while the detection rates of [14] are
16%, 15% and 52% for the three sequences.

Figure 6. Examples of hand matching using our method on the gesture
sequences of [4].
Three Test Videos of Deformable Objects: The first

experiment considers three video sequences of different de-
formable objects: a cloth sock, a moving goose, and a
swimming fish. All these sequences contain complex de-
formation, scaling, and rotation of the target objects. Fig. 5
shows sample results of the proposed method (odd rows)
and the method of [14] (even rows). In [14], pixel color and
SIFT are used as features. In this experiment, a key point
is deemed correctly localized if it is within 10 pixels from
the ground truth. The performance of deformable match-
ing [14] degrades when object deformation increases. We
achieve a 96% average detection rate for the test sequences,
while the average detection rate for [14] is 36%. The pro-
posed method matches the target reliably even though there
are large deformation, rotation and scaling.
Hand Gesture Videos: The second experiment con-

siders the gesture dataset of [4], where we use their self-
training (ST) sequences. In this experiment, the walks are
from head to hand. Sample frames are shown in Fig. 6.
These are grayscale videos; therefore, the appearance term
Ea is computed based on pixel intensity values. For this
dataset, our method achieves a detection rate of 84%, which
is close to the 87% detection rate reported in [4]. In the self-
trained scenario of [4], the first 1000-1500 frames of each
movie sequence in the dataset were used for training and

Matching Mean Error (Pixels)
V Part TP MC [11] [2] [10] [15]

B-I
Head 3.40 11.97 20.15 58.26 63.49 5.65
Hands 10.56 12.12 49.93 88.05 77.11 16.48
Feet 5.82 20.55 44.56 58.39 85.65 10.54

B-II
Head 3.18 7.42 21.69 66.09 94.95 8.80
Hands 9.43 11.56 55.05 74.06 101.14 17.74
Feet 9.97 19.25 38.89 122.98 98.49 14.01

Gym LT-Joint 2.44 2.59 59.78 45.11 36.77 8.11
Feet 7.18 13.19 61.24 121.43 77.67 11.15

Dive Head 3.96 25.27 71.58 52.49 73.12 22.26
Feet 6.30 12.80 92.26 77.42 92.79 21.89

LJump Head 4.26 6.85 28.63 55.26 71.30 12.49
Knee 6.19 11.84 64.30 58.85 71.95 12.19

Dance
Head 1.61 5.75 5.36 43.27 62.99 1.41
Hands 3.19 9.40 33.32 56.18 58.48 6.99
Feet 2.78 8.54 19.82 15.32 76.23 3.08

Matching Error Standard Deviation (Pixels)
V Part TP MC [11] [2] [10] [15]

B-I
Head 5.14 12.35 32.06 46.15 64.54 9.49
Hands 7.47 8.28 30.78 44.24 54.49 10.73
Feet 5.99 10.51 48.82 26.31 41.65 9.67

B-II
Head 5.45 6.39 35.03 47.95 61.06 15.84
Hands 7.20 8.13 29.03 43.95 55.96 14.31
Feet 10.24 10.51 41.28 46.87 48.20 18.92

Gym LT-Joint 2.41 2.73 31.51 28.99 27.84 13.19
Feet 5.33 9.26 50.79 39.09 50.97 18.74

Dive Head 4.78 13.92 45.46 55.24 41.66 18.58
Feet 7.39 10.24 57.61 60.27 59.27 21.02

LJump Head 4.26 6.85 28.63 55.26 71.30 12.49
Knee 6.19 11.84 64.30 58.85 71.95 12.19

Dance
Head 0.82 8.38 8.53 18.81 37.70 0.74
Hands 3.45 6.31 22.27 23.53 24.42 5.64
Feet 3.95 5.95 26.25 7.99 31.66 2.78

Figure 8. Comparison of mean errors and standard deviation on the six
sports sequences. TP is the proposed method and MC is the modified
Chains method.

the rest were used for testing. In contrast, our method only
requires a single exemplar image and a few user strokes to
define the template walks.
Sports and Dancing Videos: The final experiment con-

siders videos that depict fast moving dancers and athletes.
These videos are particularly challenging, due to uncon-
trolled camera movements, abrupt video cuts, large light-
ing changes and a lot of motion blur. Within a single video
sequence, the dancers or athletes can undergo significant ro-
tations and their scales can change substantially. Motions in
these sequences can be abrupt; therefore, employingmotion
continuity constraints in tracking is unadvisable.
Example images from these test sequences are shown in

Fig. 9. The first image in each row (shown with blue bor-
der) depicts the exemplar image and stroke template with
keypoints. Subsequent images in each row show the key
points detected using our method. The few failure cases are
mostly due to similar structure in the background.
Using this same dataset, we have conducted a quanti-

tative comparison with five state-of-the-art methods in the
literature: a modified version of the Chains method of [4],
the Pictorial Structures (PS) detector of [11], a tracker based
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Balance-I Balance-II Gymnastics Diving Long Jump Dance

Figure 7. Sample results on finding key points on human subjects in the six test videos. Row 1: Our method. Row 2: Modified chains method [4]. Row 3:
Person detector [11]. Row 4: Person tracker [2]. Row 5: Pose detector [10]. Row 6: A recent 26-part person detector[15].

on PS [2], a PS detector that incorporates a two-stage opti-
mization [10], and a recent PS method that uses 26 body
parts [15]. Before presenting the results of this comparison,
we give some details of the experimental setup.
Since the Chains method [4] cannot be applied when

there is a single exemplar, we only use its optimization
model. Our modified version of the Chains method em-
ploys a small set of chains with different lengths and all the
chains use the same features as our approach. The spatial
transitional probability from vertex to vertex is set so that
it is high if the model appearance is matched. We run the
chain matching on different length models and marginalize
the probability.
Details of the experimental setup for the PS models

are as follows. The first PS method of [11] uses strong
body part detectors. For a fair comparison, we incorpo-
rate color information into the local part detection. We lin-
early combine the color matching map with the shape con-
text matching map to form the local part detection map for
this method. We adjust the combining ratio to achieve its
best performance. The second PS method of [2] uses the
exemplar for each sequence to train the color model. The
PS method of [15] uses 26 body parts and to be fair, color

appearance is included in the PS model local part detectors.
Thus, except for [10] all the competing methods we tested
use the color model from the same exemplar as the proposed
method. The PS models we compared are scale dependent
except the 26-part PS model [15]. In our experiments we
assume that these PS methods have the advantage of know-
ing the correct scale and use it to normalize the image sizes
before part detection and matching.
Sample results of the competing methods and our

method are shown in Fig. 7. A quantitative comparison of
the mean matching errors and their standard deviation on
each sequence for each method are shown in Fig. 8. Our
method achieves consistently better average matching error
in nearly all the tests. In the dance sequence, the dancer
has mostly upright poses and the 26-part PS method has
better head detection than the proposed method, while the
proposed method has lower mean errors on the more chal-
lenging hand and foot detection.
The proposed method is efficient. The typical running

time for detecting head, feet and hands of a human subject
is 5 seconds per frame in our experiments on a 2.8GHz ma-
chine, which is comparable to [15] that runs in 4 seconds,
while the method of [2] takes about 10 seconds, [10] takes
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Figure 9. Sample matching results of the proposed method on sports and dance sequences. Row 1: 410-frame balance-I. Row 2: 459-frame balance-II.
Row 3: 170-frame gymnastics. Row 4: 238-frame diving. Row 5: 178-frame long jump. Row 6: 426-frame dance. The first image in each row shows
the exemplar image overlaid with template walk paths. These test sequences have complex body part articulation, large rotation, scale changes, cluttered
backgrounds and blurred imagery. The proposed method matches reliably in spite of these challenges.

60 seconds and [11] takes 90 seconds for each scale.

4. Conclusion
We propose a novel method for matching articulated ob-

jects in cluttered videos by walking on pixels. The new
formulation enables scale resilient and rotation invariant
matching. Working directly on pixels, it combines feature
extraction and structure matching in an integrated frame-
work. Our experiments on a variety of videos confirm that
the proposed method is reliable and efficient. It is able to
find key points on fast moving articulated objects in very
cluttered videos and shows superior performance to com-
peting methods. It is also much faster than most pictorial
structure methods. We believe the proposed method is use-
ful for many applications including object tracking, move-
ment analysis and action recognition.
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