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Abstract

We propose a novel linear method for scale invariant fig-
ure ground separation in images and videos. Figure ground
separation is treated as a superpixel labeling problem. We
optimize superpixel foreground and background labeling so
that the object foreground estimation matches model color
histogram, its area and perimeter are consistent with object
shape prior, and the foreground superpixels form a con-
nected region. This optimization problem is challenging
due to high-order soft and hard global constraints among
large number of superpixels. We devise a scale invariant
linear method that gives an integer solution with a guaran-
teed error bound via a branch and cut procedure. The pro-
posed method does not rely on motion continuity and works
on static images and videos with abrupt motion. Our ex-
perimental results on both synthetic ground truth data and
real images show that the proposed method is efficient and
robust over object appearance changes, large deformation
and strong background clutter.

1. Introduction
We propose a novel method for scale invariant global

figure ground separation. We assume that the foreground
properties are known, e.g., the object color histogram and
shape description are available, but the background proper-
ties are are unknown. This is a typical scenario when we lo-
calize objects in images and videos. We also do not assume
motion continuity so that the proposed method can be used
for foreground estimation in static images and challenging
videos. Fig. 1 illustrates the problem we tackle.
We treat figure ground separation as a labeling prob-

lem. We label over-segmented superpixels in images as
foreground and background so that the foreground region is
consistent with the object model in appearance and shape,
and at the same time the foreground superpixels are con-
nected. This is a challenging problem due to the high or-
der coupling among large number of superpixels. To our
knowledge this global segmentation problem has not been
well explored. It is an open question whether an efficient so-
lution exists to satisfy all the global constraints and is able
to achieve global optimal or near global optimal result.
In this paper, we propose an efficient linear method to

Figure 1. Using foreground model extracted from one image (upper left)
we find the object foregrounds in images using a scale invariant linear ap-
proach. The foreground estimation follows model histogram, shape and
maintains region connectivity.

tackle the global figure ground separation problem. We con-
struct a scale invariant linear formulation and a branch and
cut procedure to directly obtain the integer solution. We ap-
ply the proposed method in localizing both rigid and highly
deformable objects in images and videos. The proposed
method has the following properties: (1) It is scale invari-
ant, (2) satisfies global appearance, shape and connectivity
constraints, and (3) it efficiently solves the global segmen-
tation problem with an error bound guarantee.
Object figure ground separation has been intensively

studied. One popular scheme is to extract a moving ob-
ject by tracking. By combining tracking and segmentation,
human subjects can be reliably localized in videos [1] using
Conditional Random Field and Belief Propagation. In [2],
pixel level tracking and foreground labeling are optimized
simultaneously in a dual decomposition framework. Video
segmentation [7] has also been studied to extract 3D su-
perpixels. Automatic human segmentation [3] has been
achieved by combining people detection, level set method
and Belief Propagation to link foreground estimations into a
continuous volume. Unsupervised method [6] has recently
been proposed to group object category independent pro-
posals [5] into object trajectories. These previous methods
achieve accurate results on videos with continuous motion
but cannot be easily extended to process videos with motion
discontinuity. We propose a new method to tackle the prob-
lem. The proposed method also does not reply on specific
object detectors and can thus be directly applied to many
different objects.
Foreground connectivity is a strong prior for figure

ground separation. Connected Markov Random Field [11]
and Steiner tree method [4] [15] have been successfully
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applied to connectivity constrained figure ground separa-
tion in object class segmentation. These previous meth-
ods use unary and pairwise terms in the objective function
and require both foreground and background models. Ide-
ally foreground superpixels have mostly negative costs and
background superpixels have mostly positive costs. Fore-
ground object can thus be extracted by finding connected
superpixels that have minimum total cost. This scheme can-
not be easily extended to solve our problembecause we only
have the foreground model and our local costs all have the
same sign. Minimizing the overall cost would give a triv-
ial result. A foreground size constraint can be included to
relieve the problem. However, this still does not solve the
problem because the composition of features is not consid-
ered in these previous methods. Using only unary and pair-
wise objective would cause segmentation error if the back-
ground clutter has similar appearance to the foreground ob-
ject. We need a new formulation that includes high order
terms to constrain the overall object appearance, shape, con-
nectivity, and the formulation needs to be scale invariant.
Including global constraints such as color histogram con-

sistency in the optimization improves the segmentation re-
sult but at the same time makes the problem hard to solve.
Different approximation methods have been proposed. In
[9], image cosegmentation is first proposed. This formu-
lation uses an L1 norm color histogram consistency term,
and an iterative graph-cut approach is proposed to obtain
an approximation solution to the linear combination of the
sub- and super-modular problem. Another iterative graph-
cut method using Bhattacharyya distance to measure color
histogram difference is proposed in [17] for scale invari-
ant figure ground separation. Foreground connectivity is
not explicitly constrained in these methods. Convex relax-
ation methods have also been intensively studied. Linear
relaxation for a quadratic formulation [10] is proposed to
solve the cosegmentation problem. Discriminative cluster-
ing and quadratic optimization have also been successfully
applied to cosegmentation in [8]. In [13], linear relaxation
method with spatial constraints has been proposed to group
superpixels into object foreground. With a training set, ob-
ject part interaction in the segmentation hierarchy can also
be extracted for robust object class segmentation [12] using
non-convex quadratic programming. Relaxation methods
yield floating point results and still need to be converted to
integer solutions and these previous methods do not explic-
itly constrain the foreground continuity.
The contribution of this paper is a scale invariant lin-

ear method for global figure ground separation, which ef-
ficiently yields integer solutions with a guaranteed error
bound. The proposed method only uses the object fore-
ground model. It models both global soft and hard con-
straints so that the estimation complies with the model ap-
pearance and shape, and it guarantees the connectivity of
the foreground estimation. These properties are critical for

reliable segmentation results.

2. Method
Global figure ground separation can be written as the fol-

lowing optimization problem.

min
x,s
{H(x, s) + λA(x, s) + μP (x, s) + γT (x)}

s.t. Foreground is connected under labeling x. (1)

Here, x is the foreground/background superpixel labeling
and s is an unknown scale. H(x, s) measures the similar-
ity between the foreground histogram and the model; H is
small if the labeled foreground region fits the model his-
togram at a specific scale s. A(x, s) and P (x, s) quantify
the area and perimeter difference between the model and
the labeled foreground region at scale s. A and P terms
thus constrain the shape of the foreground estimation. T (x)
includes the optional unary and pairwise terms. λ, μ, γ are
constant parameters controlling the weight among different
terms. In this paper, λ = μ = 1 and γ = 0.01. Apart from
the soft constraints on x, the labeling has to yield a con-
nected foreground estimation. Eq. (1) defines a challeng-
ing combinatorial optimization problem. Naive exhaustive
search is not an option. In the following, we linearize the
problem so that we can efficiently find its lower bound and
use it as a basis for an efficient branch and cut procedure.

2.1. Linearization
We label each superpixel as foreground or background in

the target image. Let xi be the indicator variable for super-
pixel i = 1..N . If superpixel i is on the foreground xi = 1,
and if it is on the background xi = 0. The unary cost of the
superpixel labeling is thus

∑N
i=1 cixi, where ci measures

how well superpixel i matches the foreground model. Note
that we only have the object foreground model and ci ≥ 0
for each i. Directly minimizing the unary cost would thus
give a trivial all 0 solution. We use a high order formulation
to solve the problem.

2.1.1 HistogramMatching
We enforce that the overall color histogram of the fore-
ground estimation should be close to the model color his-
togram. Let h̃(k) be the model color histogram at bin k and
hi(k) be superpixel i’s color histogram at bin k in the target
image. The L1 distance between the color histogram of the
model and that of the estimated foreground region is

H(x, s) =
X

k

|h̃(k)− s
X

i

hi(k)xi|, (2)

where s is the unknown scale. Note that it is critical to apply
s to the target histogram. The seemly simpler formulation
that applies s to the model histogram has a bias to find small
object foreground. By minimizing H , the foreground esti-
mation matches model’s global color composition.
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H is nonlinear. We convert it into a linear form. We use
the trick min |x| ⇔ min y : −y ≤ x ≤ y, y ≥ 0 to remove
the L1 norm in H :

min H(x, s)⇔min
X

k

gk (3)

s.t. − gk ≤ h̃(k)− s
X

i

hi(k)xi ≤ gk, gk ≥ 0.

In Eq. (3), the objective function is linearized, but the con-
straints are still nonlinear because of the quadratic term sxi.
To linearize the quadratic term, we first consider a spe-

cial case, in which s is the only scaling factor in the formu-
lation. We notice that since x is binary, sxi takes value s
if xi = 1, and otherwise 0. We therefore introduce a new
variable ui and we enforce that ui = s when xi = 1, and
otherwise ui = 0. This can be achieved by introducing the
linear constraint

s + L(xi − 1) ≤ ui ≤ s + L(1− xi), 0 ≤ ui ≤ Lxi, (4)

where L is a large positive number. With the above con-
straint, if xi takes 1, ui has to equal s, and if xi is 0,
ui = 0. Therefore the quadratic term can be linearized as
s
∑

i hi(k)xi =
∑

i hi(k)ui, where ui satisfies the con-
straint in Eq. (4).
In general cases, the formulation may involve scaling

factors that are nonlinear functions of s. In section 2.1.2,
we introduce the perimeter consistency term that has a scal-
ing factor s0.5 instead of s. In this case, the above contin-
uous scale method is not able to generate a complete linear
formulation. To solve the problem, we quantize s into dis-
crete values. Instead of labeling a superpixel as foreground
or background, we label each superpixel as foreground or
background at a specific scale lm, m = 1..M , where lm
is a quantized s at level m. The augmented labeling vari-
able is denoted as xi,m, which is 1 if superpixel i is labeled
as foreground at scale level m, and otherwise 0. We have∑

m xi,m = xi, if we collapse xi,m along the axis of scale.
xi and xi,m are correlated by

xi,m ≤ xi, xi,m ≤ sm, xi,m ≥ xi + sm − 1, xi,m ≥ 0, (5)

where sm is a binary variable that takes 1 if scale level
m is selected and 0 otherwise. Since we can only choose
one scale,

∑M
m=1 sm = 1. Following the above proce-

dure, we convert the quadratic term into a linear expansion:
s
∑

i hi(k)xi ≈
∑

i,m lmhi(k)xi,m. H is linearized.

2.1.2 Shape Consistency
Apart from color histogram matching, we require that
the segmentation is consistent with both the area and the
perimeter of the model at scale s. This enforces a shape
constraint on the estimated foreground region.
The area consistency term is represented as follows. Let

ã be the area of the model and ai be the area of superpixel
i. The area consistency term A(x, s) is

A(x, s) = |ã− s
X

i

aixi| ≈ |ã−
X

i,m

lmaixi,m|, (6)

which can be turned into linear objective and constraints
using the auxiliary variable trick used in Eq. (3).
We further constrain the perimeter of the foreground es-

timation. In superpixel labeling, a boundary line between
two adjacent superpixels becomes part of the object bound-
ary if the superpixels receive different labels. If a superpixel
is located adjacent to the boundary of the image and labeled
as foreground, its boundary segment attaching to the image
boundary should also be counted. To simplify the formula-
tion, we introduce a dummy region to represent everything
outside of the image and fix its label as 0; in this way, the
border superpixels can be treated just as other regular ones.
We minimize the difference of the perimeter of the target
region with the model at scale s. Note that when an object’s
area is scaled by s, its perimeter is scaled by s1/2. The
perimeter consistency term P is

P (x, s) = |̃b − s1/2
X

{i,j}∈N
bi,j |xi − xj | |, (7)

where b̃ is the model boundary length and bi,j is the bound-
ary length between adjacent superpixels i and j. The set
of adjacent superpixels is N . To linearize P , we introduce
pairwise variable yi,j that is s0.5 if xi and xj take different
values, and 0 otherwise. y and x are related by

yi,j ≤ s0.5(xi + xj), yi,j ≤ s0.5(2− xi − xj), (8)

yi,j ≥ s0.5(xi − xj), yi,j ≥ s0.5(xj − xi).

It is not hard to verify that with the above constraints, if x is
binary, y must be the desired pairwise assignment variable.
Notice that s0.5 ≈ ∑

m l0.5
m sm and s0.5xi ≈

∑
m l0.5

m xi,m,
and by substitution we linearize the constraints in Eq. (8).
The perimeter term becomes

P = |̃b −
X

{i,j}∈N
bi,jyi,j |. (9)

Since we use L1 norm, by further using auxiliary variables,
the P term can be finally converted to linear.

2.1.3 Optional Linear Terms
We can further include optional unary and pairwise terms.
The unary term quantifies the local similarity of each super-
pixel to the model, and is written as

∑
i cixi, where ci is

sum of the smallest distance from each color in superpixel
i to the model colors. The pairwise term quantifies how
strongly two superpixels connect and we prefer to merge
similar superpixels with weak boundaries. The merging
cost is thus determined by color histogram similarity and the
contact edge strength. The cost of merging neighboring su-
perpixels i and j is defined as di,j = D(i, j)+ κgi,j, where
D(i, j) is the χ2 distance between the color histograms of
superpixels i and j, and gi,j is the average gradient magni-
tude on the boundary between superpixels i and j. In this
paper, κ is 1. T is written as

T =

NX

i=1

cixi +
X

{i,j}∈N
di,jxixj , (10)
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in which xixj can be replaced by variable ti,j that satisfies
ti,j ≤ xi, ti,j ≤ xj , ti,j ≥ 0 and ti,j ≥ xi + xj − 1. Since
T has a bias toward small foreground estimation, it has a
small weight 0.01.
Combining the above terms we obtain a linear optimiza-

tion. However, its solution does not guarantee the connec-
tivity of the foreground estimation. We further introduce
connectivity cuts into the optimization.
2.1.4 Connectivity Constraint
Connectivity cuts are linear constraints that are violated by
non-connected foreground estimations. There are different
ways to specify these cuts [15, 11]. Even though our objec-
tive function in Eq. (1) is nonlinear and contains high order
terms, these connectivity cuts can still be applied. In this
paper, we adopt the linear cut proposed in [11]. The differ-
ence is that we directly work on integer solutions instead of
floating point relaxations. There is also no concept of the
most violated cut and we need a different criterion to insert
cuts.
We construct a superpixel graphwhose nodes correspond

to superpixels. We insert bidirectional edges between two
nodes if the corresponding superpixels are adjacent. In the
superpixel graph, the set of bottleneck nodes for superpix-
els i and j, denoted by Qi,j , includes all the nodes whose
corresponding superpixels have been labeled as background
and would disconnect the path from i to j if all of them are
removed. If i and j are two disconnected foreground super-
pixels, the connectivity cut is xi + xj −

∑
k∈Qi,j

xk ≤ 1.
The bottleneck nodes can be found by a maxflow-mincut
algorithm. Different from [11], we build the flow network
directly on top of the superpixel graph and set edge capac-
ity to 1 if the corresponding adjacent superpixels have at
least one 0 label, and otherwise the edge capacity is infinity.
Using the flow network, we compute the maxflow between
a pair of nodes that correspond to disconnected foreground
superpixels i and j; with the residual network, we find the
cut edges that separate the source node cluster and sink node
cluster; the bottleneck nodes inQi,j are the source nodes of
these cut edges if they do not correspond to superpixel i or
j, or else their target nodes are the bottleneck nodes.
For disconnected foreground superpixels the left hand

sides of all the cut inequalities equal 2. We therefore need
a strategy to choose which cut to include into the opti-
mization. In this paper, we introduce the cut that corre-
sponds to the top two largest disconnected foreground re-
gions in the current solution. Our experiment shows that
this method has the fastest convergence rate comparing to
other approaches.

2.2. Optimization
The complete mixed integer linear formulation for the

global foreground estimation is:

min{
X

k

gk + λw + μp + γ(
X

i

cixi +
X

{i,j}∈N
di,jti,j)} (11)

Subject to:

− gk ≤ h̃(k)−
X

i,m

lmhi(k)xi,m ≤ gk, gk ≥ 0

xi,m ≤ xi, xi,m ≤ sm, xi,m ≥ xi + sm − 1,
X

m

sm = 1

− w ≤ ã−
X

i,m

lmaixi,m ≤ w, w ≥ 0

yi,j ≤
X

m

l0.5
m (xi,m + xj,m), yi,j ≤

X

m

l0.5
m (2− xi,m − xj,m),

yi,j ≥
X

m

l0.5
m (xi,m − xj,m), yi,j ≥

X

m

l0.5
m (xj,m − xi,m),

− p ≤ b̃−
X

{i,j}∈N
bi,jyi,j ≤ p, p ≥ 0,

xi ≥ ti,j , xj ≥ ti,j , ti,j ≥ 0, ti,j ≥ xi + xj − 1, ∀{i, j} ∈ N
Connectivity Cuts, xi, sm = 0 or 1, all variables ≥ 0

The linear optimization is equivalent to the original non-
linear optimization in Eq. (1) on discrete scales. Eq. (11)
has the following structure:

min eT z : Fz = f, Dz = d (12)

where z is a vector that includes x, y, s and other auxiliary
variables and e is the constant coefficient vector. The fixed
constraint Fz = f is induced by the color histogram, area,
perimeter, unary and pairwise terms, and the dynamic con-
straint Dz = d is composed of the connectivity cuts. The
set of connectivity cuts starts from an empty set and expands
with a single cut at a time to penalize the two largest discon-
nected foreground regions. Therefore the proposed method
finds object foreground by iteratively solving a sequence of
mixed integer linear programs. This procedure terminates
when there is only one connected foreground region in the
estimation.
Proposition 1. The above iterative cutting plane procedure
guarantees that each connected foreground is a feasible so-
lution of the integer linear program. And, as the iteration
terminates, we obtain the optimal connected segmentation
that minimizes the objective in Eq. (1) on discrete scales.
We never lose feasible connected solutions when we

shrink the feasible region of Eq. (11) by adding connec-
tivity cuts, since each connected foreground estimation has
to satisfy every new cut introduced. Therefore the optimum
of the integer program is not greater than the global opti-
mum of Eq. (1) on discrete scales. Since there are finite
number of connectivity cuts, the iteration terminates in fi-
nite number of steps. As the iteration terminates, the result
is a connected foreground estimation and therefore its cost
is not smaller than the global optimum of Eq. (1) on dis-
crete scales. The sequential mixed integer program is thus
equivalent to solving the original nonlinear optimization on
discrete scales.
We use a branch and bound procedure to solve the se-

quence of mixed integer linear programs. The key for fast
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convergence is to find tight upper and lower bound quickly.
The lower bound of the mixed integer linear program is ob-
tained by its relaxation that ignores the integer constraint.
If the linear program gives integer solution for xi and sm,
the objective is an upper bound. Otherwise, we find an up-
per bound by rounding. For optimization without connec-
tivity cuts, the upper bound is found by rounding the lin-
ear program solution for xi, i = 1..N, with a threshold of
0.5 and searching through each scale assignment for sm to
minimize the objective. With connectivity cuts, we obtain a
binary solution that satisfies all the constraints by threshold-
ing xi with 0.5 and finding the largest connected foreground
component on the superpixel graph as the object foreground
estimation; we then try each discrete scale and pick up the
smallest objective as an upper bound estimation. We update
the upper bound if the current estimation is smaller.
We branch the search tree on the node with the smallest

lower bound and introduce integer cuts on the most frac-
tional variable (the variable closest to 0.5). For the node
with the lowest lower bound, a new cut zi = 0 or zi = 1
where zi is either an x variable or an s variable is included
in the linear program. Fortunately, we do not have to solve
each linear program from scratch, since there is only one
more new constraint included. By introducing slack vari-
ables, zi = 0 or equivalent zi ≤ 0 becomes zi + vi,0 = 0,
and zi = 1 or equivalent zi ≥ 1 becomes zi − vi,1 = 1
where vi,0 ≥ 0, vi,1 ≥ 0. zi is a basic variable and its right
hand side is a fractional number in the final simplex tabu-
lar. For the zi = 0 branch, we subtract the original zi row
from zi + vi,0 = 0, and for the zi = 1 branch, we subtract
zi − vi,1 = 1 from the zi row. In either case, we turn vi,0

or vi,1 into a basic variable that is non-feasible because it
has negative value on the right hand side. The dual-simplex
method is then applied in pivoting and usually it takes very
few steps to regain the optimal solution.
We discard the branch whose linear program solution is

infeasible or is greater than the current upper bound. Most
of the branches are pruned quickly. We keep track of the
upper bound Bu and lower bound Bl of the solution. Bl is
the lowest lower bound of all the active search tree nodes.
Branch and bound can be terminated prematurely when
the tolerance gap δ = 2(Bu−Bl)

(Bu+Bl)
is reached. Fortunately,

the quality of segmentation degrades slowly as δ increases.
We therefore can choose large δ to speed up the search
with only minor performance degradation. The branch and
bound procedure essentially solves a set of promising linear
relaxations with different choices of fixed labels and finally
we pick the best result. When the search is complete, the
objective is upper bounded by (δ + 2)/(2 − δ) times the
global minimum. To further reduce the complexity, we can
also terminate the search when the foreground connectivity
ratio is above a threshold r. We define the connectivity ratio
as the percentage of the area of the largest connected com-
ponent in the whole foreground area. The branch and cut

procedure is summarized as follows.
Algorithm 1. Linear Global Figure Ground Separation
1. Compute superpixels, their color histograms, areas,
perimeters, local costs and merging costs. Set toler-
ance gap δ and connectivity ratio r.

2. Construct the mixed integer linear program (Eq. 11).
3. Branch and bound with gap tolerance δ (section 2.2).
4. While foreground connectivity ratio < r

Include a connectivity cut (section 2.1.4).
Branch and bound with δ (section 2.2).

5. Find the largest connected foreground component and
let it be the estimated object foreground.

3. Experimental Results
We first illustrate the advantage of the proposed scale in-

variant approach over explicitly searching through multiple
scales. Fig. 2 compares these two approaches. In our exper-
iment, we use the graph method in [16] to generate super-
pixels. In multiple scale segmentation, we try each quan-
tized scale explicitly and apply the branch and cut method
in each case. Fig. 2 rows 2-5 show results of the multiple
scale method. Fig. 2 row 6 shows the result of the pro-
posed scale invariant method with the same parameter set-
ting (δ = 0.5, r = 1). We use 8 bins for each color chan-
nel. The proposed method converges with three connectiv-
ity cuts to satisfy the connectivity constraint and there are
total 380 linear programming relaxations in the branch and
bound comparing to total 4452 linear relaxations in the mul-
tiple scale method. The scale invariant method is 10 times
faster than the multiple scale approach.
3.1. Synthetic Data
We test the proposed method on synthetic ground truth

data. The synthetic images contain blocks with random in-
tensities. The foreground is generated with a random mask
that roughly has a rectangle shape. Fig. 3 (a) shows a
foreground mask. Fig. 3 (b) is an image randomly gener-
ated using the mask. The foreground intensity is uniformly
distributed in [0, 1]. Clutter with similar intensities to the
foreground is introduced into the background. We include
random perturbation to the foreground intensities to simu-
late object appearance variations. The template is randomly
scaled in [0.5, 2]. We use two levels of foreground color dis-
turbance 0.01 and 0.02, and 3 levels of clutter settings 0.1,
0.15 and 0.25. Therefore there are total 6 test cases. For
each test case, we randomly generate 1000 test images. We
compare the proposed method with its variants and several
competing method.
We first test how the settings on the tolerance gap δ

would affect the segmentation result. Fig. 3 (c) and (d) show
foreground estimations of the sample image in Fig. 3 (b) us-
ing δ = 10−6 and 1. We obtain the same segmentation re-
sult under these two settings, while the second one is many
times faster. In Fig. 4, the bar charts for ThisPaper (a), (b)
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Figure 4. Error histograms on the synthetic ground truth data. Row 1 from left to right: Test 1, 2 and 3. Row 2: Test 4, 5 and 6. The lower number bins
correspond to lower errors. Bar length represents the proportion in all the tests. Good results correspond to longer bars for low-number bins and shorter bars
for high-number bins. ThisPaper (a), (b) and (c) correspond to the proposed method with δ = 10−6, 0.5 and 1 respectively. Local method uses local feature
similarity and unary, pairwise terms, and maintains foreground connectivity. NoConn ignores the connectivity constraint. We also compare with GraphCut
[17], Cluster [8] and Proposals [5] methods.

Figure 2. Comparison of scale invariant method with multiple scale
method. Row 1: Model object, target image and superpixels. Row 2-3:
Samples of 17 iterations to connect foreground estimation at scale 1. Row
4-5: Foreground estimations for scales from 0.5 to 2 (blue) and the final
result (red). It takes about 10 second to complete. Row 6: The proposed
scale invariant method satisfies the foreground connectivity constraint in 3
iterations and converges in less than 1 second. It uses total 380 relaxations
comparing to 4452 in the multiple scale approach.

and (c) show the error distributions of the proposed method
with δ = 10−6, 0.5 and 1 in 6000 tests. The error metric
is defined as follows. We compute the sum of the absolute
values of the pixel-wise differences between the foreground
estimation map and the ground truth map, and use its ratio
to the total number of the ground truth foreground pixels as
the error measurement. The ratio may be greater than 1. As
shown in Fig. 4 and Fig. 5, even with a large error bound
setting, the segmentation result degrades little. By setting
large δ, the running time reduces by orders of magnitude.
We compare with several competing methods. The first

competing method uses local feature similarity in the objec-
tive function with unary and pairwise terms. It guarantees
the foreground connectivity. The second competing method
is the variant of the proposed method that does not include

(a) (b) (c) (d)

(e) (f) (g) (h) (i)
Figure 3. Sample results on synthetic ground truth data. (a) A foreground
mask. (b) A random pattern generated from (a). (c) The proposed method
with δ = 10−6 completes in 1.9 seconds, and (d) with δ = 1 it completes
in 0.09 seconds with the same result. The second row shows the results of
competing methods: (e) local method, (f) global method ignoring connec-
tivity constraint, (g) the graph-cut based method [17], (h) cluster method
[8], and (i) object category independent proposal method [5].
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Figure 5. Mean errors and standard deviations of different methods on the
synthetic ground truth data.

the connectivity constraint. If the foreground estimation
is not connected, we find connected component that has
the lowest objective in Eq.(1). We compare the proposed
method with the iterative graph-cut method [17], discrim-
inative clustering method [8] and object category indepen-
dent proposal method [5]. The clustering method does not
consistently set the foreground to 1, so we try both the 1 re-
gion and 0 region and find the best estimation. If the cluster
and graph cuts based methods generate disconnected fore-
ground estimations, we enumerate all the connected compo-
nents using the criterion the same as the proposed method
in Eq. (1) except the superpixel merging term. Using the
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Figure 6. Sample results of the proposed method on 97-frame waterski
sequence [7]. Upper-left image shows the template.

Figure 7. Tracking using video snapcut [14]. Samples results are for bike
sequence (row 1) and TV show sequence (row 2).
method in [5] we generate proposals of foreground seg-
mentation and then find the best one using Eq. (1) with-
out the superpixel merging term. We adjust color histogram
bin numbers for the competing methods to achieve their
best performance. Competing methods also have the ad-
vantage of choosing non-connected foreground estimation
if it matches the ground truth better than their connected es-
timation. Sample comparison results on the synthetic data
are shown in Fig. 3. Fig. 4 and Fig. 5 show the quantita-
tive comparison results; the proposedmethod has the lowest
mean errors in all the tests.

3.2. Real Images
We test the proposed method on challenging real images

and videos. Fig. 6 shows sample results of the proposed
method on the waterski sequence from [7]. The model is
generated from a randomly selected image. The proposed
method successfully segments the object even though there
are large scale changes, occlusion and motion blur. In the
real image experiments, we set δ = 0.5, r = 1 and use 8
bins in each color channel.
For quantitative comparison, we test on 7 challenging

video sequences (Fig. 10) including the figure skating se-
quence from [1], skating and dance videos from [13], a
baby video from YouTube, two broadcasting videos and a
recorded video. These videos include strong clutter, large
scaling, object deformation, and some contain abrupt cam-
era view angle changes. Traditional video segmentation
methods that reply on motion continuity have difficulty in
dealing with such sequences. Fig. 7 shows sample results
of the video snapcut [14] (Roto Brush in Adobe After Ef-
fects) on the bike and TV show sequence with manual ini-
tialization in the first video frame. Video snapcut drifts and
gradually loses the target in the bike sequence, and it is not
able to segment the object in the TV show sequence due to
abrupt video cuts. In contrast, the proposed method is able
to give reliable results as shown in Fig. 10 row 4 and row 6.
We compute the object foreground model from a ran-

domly selected image in each test sequence. The model
images and the labeled foregrounds are shown in Fig. 8

Figure 8. Sample results on 7 test videos. Foreground is shown in red
channel. Row 1: Model images and objects of interest. Row 2: Proposed
method. Row 3: Ignoring connectivity constraint. Row 4: Local method.
Row 5: Cluster method [8]. Row 6: Graph-cut method [17]. Row 7:
Proposal based method [5].
row one. Fig. 8 shows how the proposed method improves
the results over the five competing methods. The com-
peting methods use the same settings as those in section
3.1. For quantitative comparison, we labeled half of the
video frames in each sequence and we measure the mean
errors and the error standard deviations of each competing
method. The error metric is the same as the one that we use
in the synthetic data experiment. Fig. 9 summaries the mean
errors and standard deviations of different methods on the
real image test. The proposed method consistently gives the
smallest mean errors in all the tests. Overall, it also has the
smallest standard deviation.
More sample results of the proposed method on the test

sequences are shown in Fig. 10. The proposed method is
able to handle strong clutter, scale changes, motion blur,
large deformation and object view angle changes. Since
color histogram and the shape features are resistant to ob-
ject deformation, and different terms are combined in a soft
fashion in the objective function, our method is not sensitive
to the model image selection. Local segmentation errors are
mostly caused by strong background clutter that has similar
appearance to the model and is connected to the object fore-
ground. The result also degrades if the superpixels are too
coarse. Fortunately, the proposed method allows us to use
detailed over-segmented superpixels and still maintains ef-
ficiency. The typical running time of the proposed method
on each image is less than 5 seconds on a 2.8GHz machine,
which is similar to the graph-cut method [17] and the local
approach, and is faster than the proposals [5] and clustering
[8] methods that take about 200 seconds per image.

4. Conclusion
We propose a novel scale invariant linear solution to

global figure ground separation. The proposed method ex-
plicitly enforces the global color histogram, area, perimeter
and connectivity constraints. It requires only the foreground
model and therefore is able to segment objects in changing
backgrounds. The solution of the proposed method has a
guaranteed error bound. Our experiments on both synthetic
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Figure 10. Sample results of the proposed method on 7 test sequences. Row 1: 751-frame skate-I. Row 2: 493-frame skate-II. Row 3: 651-frame baby.
Row 4: 501-frame bike. Row 5: 1016-frame table. Row 6: 600-frame TV show. Row 7: 144-frame dance.

Skate-I Skate-II Baby Bike Table TVShow Dance
This 0.338 0.309 0.314 0.442 0.264 0.225 0.271
Paper ±0.09 ±0.09 ±0.08 ±0.18 ±0.09 ±0.12 ±0.15
NoConn 0.447 0.516 0.538 0.738 0.434 0.475 0.361

±0.16 ±0.44 ±0.16 ±0.56 ±0.33 ±0.42 ±0.24
Local 2.122 3.000 0.912 4.283 1.690 2.303 2.588

±1.07 ±4.37 ±0.30 ±4.21 ±0.64 ±1.52 ±0.93
Cluster 2.045 1.020 1.222 1.039 1.000 0.965 3.781
[8] ±2.14 ±0.26 ±0.44 ±0.15 ±0.01 ±0.14 ±0.99

GraphCut 0.383 0.872 0.979 0.946 0.914 0.608 2.376
[17] ±0.15 ±1.43 ±0.28 ±0.79 ±0.27 ±0.47 ±0.93

Proposal 0.512 0.334 1.129 0.687 0.675 0.599 2.162
[5] ±0.19 ±0.17 ±0.68 ±0.39 ±1.05 ±0.28 ±2.21

Figure 9. Mean errors and standard deviations of different methods on 7
test videos. Bold fonts indicate the smallest value in each category.

ground truth data and challenging real videos show that the
proposed method is efficient and has superior performance
to the competing methods.
Acknowledgment: This research is supported by US NSF
grant 1018641.
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